PostgreSQL MCP Server
Provides read-only access to PostgreSQL databases with schema inspection, query execution in multiple formats (JSON, CSV, Markdown), and query history tracking with built-in security features.
README
PostgreSQL MCP Server
A Model Context Protocol (MCP) server that provides read-only access to PostgreSQL databases. Execute SELECT queries, inspect database schema, and track query history with built-in safety features.
Features
- Read-Only Query Execution: Execute SELECT queries with automatic read-only transaction enforcement
- Multiple Output Formats: Results in JSON, CSV, or Markdown table format
- Schema Inspection: List tables, describe table structures, view indexes, and explore schemas
- Query History: Track recently executed queries with execution time and metadata
- Connection Pooling: Efficient connection management with configurable pool sizes
- Security: Query validation, SQL injection prevention, and read-only transaction guarantees
- Database Statistics: View database size, table counts, and connection information
Installation
- Clone this repository:
git clone <repository-url>
cd postgres-mcp
- Install dependencies using
uv:
uv sync
Configuration
Environment Variables
Create a .env file in the project root (use .env.example as a template):
# Required: PostgreSQL Connection Parameters
POSTGRES_HOST=localhost
POSTGRES_PORT=5432
POSTGRES_DATABASE=myapp
POSTGRES_USER=readonly_user
POSTGRES_PASSWORD=secure_password
# Optional: Connection Pool Configuration
POSTGRES_POOL_MIN_SIZE=2 # Default: 2
POSTGRES_POOL_MAX_SIZE=10 # Default: 10
POSTGRES_COMMAND_TIMEOUT=60 # Default: 60 seconds
POSTGRES_CONNECTION_TIMEOUT=10 # Default: 10 seconds
# Optional: Query History Configuration
QUERY_HISTORY_SIZE=100 # Default: 100
# Optional: Logging Configuration
LOG_LEVEL=INFO # Default: INFO (DEBUG, INFO, WARNING, ERROR)
Database User Setup
For security, create a dedicated read-only PostgreSQL user:
-- Create read-only user
CREATE USER readonly_user WITH PASSWORD 'secure_password';
-- Grant connect permission
GRANT CONNECT ON DATABASE myapp TO readonly_user;
-- Grant schema usage
GRANT USAGE ON SCHEMA public TO readonly_user;
-- Grant select on all tables
GRANT SELECT ON ALL TABLES IN SCHEMA public TO readonly_user;
-- Grant select on future tables
ALTER DEFAULT PRIVILEGES IN SCHEMA public
GRANT SELECT ON TABLES TO readonly_user;
Usage
Running the Server
uv run python main.py
The server communicates via stdio and can be integrated with MCP clients like Claude Desktop.
Integrating with Claude Desktop
Add this configuration to your Claude Desktop config file:
MacOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
{
"mcpServers": {
"postgres": {
"command": "python",
"args": ["/path/to/postgres-mcp/main.py"],
"env": {
"POSTGRES_HOST": "localhost",
"POSTGRES_PORT": "5432",
"POSTGRES_DATABASE": "myapp",
"POSTGRES_USER": "readonly_user",
"POSTGRES_PASSWORD": "secure_password"
}
}
}
}
Alternatively, if using uv:
{
"mcpServers": {
"postgres": {
"command": "uv",
"args": [
"run",
"--directory",
"/path-to-postgres-mcp/postgres-mcp",
"python",
"main.py"
]
}
}
Available Tools
1. query_database
Execute SELECT queries on the database with formatted output.
Input:
{
"query": "SELECT * FROM users LIMIT 10",
"format": "json",
"timeout": 30
}
Parameters:
query(required): SQL SELECT query to executeformat(optional): Output format -json(default),csv, ormarkdowntimeout(optional): Query timeout in seconds (max 300)
Output:
{
"rows": [...],
"row_count": 10,
"columns": ["id", "name", "email"],
"execution_time_ms": 45.32,
"format": "json",
"formatted_output": "..."
}
2. list_tables
List all tables in the database with metadata.
Input:
{
"schema": "public"
}
Parameters:
schema(optional): Filter tables by schema name
Output:
{
"tables": [
{
"schema": "public",
"name": "users",
"row_count_estimate": 1500,
"size": "128 KB"
}
]
}
3. describe_table
Get detailed table structure including columns, types, indexes, and constraints.
Input:
{
"table_name": "users",
"schema": "public"
}
Parameters:
table_name(required): Name of the tableschema(optional): Schema name (default:public)
Output:
{
"schema": "public",
"table": "users",
"columns": [
{
"name": "id",
"type": "integer",
"nullable": false,
"default": "nextval('users_id_seq')",
"primary_key": true
}
],
"indexes": [...],
"foreign_keys": [...]
}
4. list_schemas
List all schemas in the database.
Input:
{}
Output:
{
"schemas": ["public", "auth", "analytics"]
}
5. get_table_indexes
Get all indexes for a specific table.
Input:
{
"table_name": "users",
"schema": "public"
}
Parameters:
table_name(required): Name of the tableschema(optional): Schema name (default:public)
Output:
{
"indexes": [
{
"name": "users_pkey",
"type": "btree",
"columns": ["id"],
"unique": true,
"primary": true
}
]
}
6. get_query_history
Retrieve recent query history with execution metadata.
Input:
{
"limit": 20
}
Parameters:
limit(optional): Maximum queries to return (default: 20, max: 100)
Output:
{
"queries": [
{
"query": "SELECT * FROM users",
"timestamp": "2025-12-04T10:30:00Z",
"execution_time_ms": 45.32,
"row_count": 10,
"format": "json",
"success": true,
"error": null
}
]
}
7. get_database_stats
Get overall database statistics and metadata.
Input:
{}
Output:
{
"database_name": "myapp",
"size": "45 MB",
"table_count": 12,
"connection_count": 5,
"version": "PostgreSQL 15.3"
}
Security Features
Read-Only Enforcement
All queries are executed within read-only transactions:
async with conn.transaction(readonly=True):
result = await conn.fetch(query)
Query Validation
Queries are validated before execution to prevent:
- INSERT, UPDATE, DELETE operations
- DROP, CREATE, ALTER operations
- TRUNCATE, GRANT, REVOKE operations
- Other write/admin operations
SQL Injection Prevention
- Input sanitization for table and schema identifiers
- Parameterized queries where applicable
- Regex-based validation of identifiers
Architecture
Components
config.py: Environment configuration and validationdatabase.py: Connection pool management and read-only query executionvalidators.py: Query validation and sanitizationformatters.py: Result formatting (JSON, CSV, Markdown)history.py: Thread-safe query history trackingtools.py: MCP tool implementationsserver.py: MCP server setup and lifecycle managementtypes.py: Pydantic models for type safety
Connection Pooling
- Min Size: 2 warm connections
- Max Size: 10 concurrent connections
- Timeout: 60 seconds command timeout, 10 seconds connection timeout
- Idle Lifetime: Automatic cleanup of inactive connections
Troubleshooting
Connection Errors
Error: "Database authentication failed"
- Verify
POSTGRES_USERandPOSTGRES_PASSWORDare correct - Check if the user exists in PostgreSQL
- Ensure the user has CONNECT permission
Error: "Database 'myapp' not found"
- Verify
POSTGRES_DATABASEmatches an existing database - Check database name spelling
Error: "Connection refused"
- Verify PostgreSQL is running on the specified host and port
- Check firewall settings
- Verify
POSTGRES_HOSTandPOSTGRES_PORTare correct
Query Errors
Error: "Query contains forbidden keyword: INSERT"
- This server only allows SELECT queries
- Use a different tool for write operations
Error: "Table does not exist"
- Verify table name and schema are correct
- Use
list_tablesto see available tables - Check if user has SELECT permission on the table
Error: "Query execution timeout"
- Query took longer than the specified timeout
- Optimize the query or increase timeout parameter
- Check for missing indexes on large tables
Permission Errors
Error: "permission denied for table X"
- The database user lacks SELECT permission
- Grant appropriate permissions (see Database User Setup)
Development
Running Tests
# Add your test commands here
pytest
Project Structure
postgres-mcp/
--- .env # Configuration (not in git)
--- .env.example # Configuration template
--- .gitignore
--- README.md
--- pyproject.toml
--- main.py # Entry point
--- src/
--- postgres_mcp/
--- __init__.py
--- config.py # Configuration
--- database.py # Connection pool
--- formatters.py # Output formatting
--- history.py # Query history
--- server.py # MCP server
--- tools.py # MCP tools
--- types.py # Pydantic models
--- validators.py # Query validation
License
[Add your license here]
Contributing
[Add contribution guidelines here]
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。