PostgreSQL MCP Server
Provides AI assistants with safe, controlled access to PostgreSQL databases with read-only defaults, granular permissions, query safety features, and schema introspection capabilities.
README
postgres-mcp
A Model Context Protocol (MCP) server for PostgreSQL integration. Give your AI assistant safe, controlled access to your databases.
Status: v0.7.0
Author: Claude + MOD
License: MIT
Org: ArktechNWA
Why?
Your AI assistant can write SQL but can't see your schema, can't run queries to verify, can't explore your data model. It's guessing.
"Just give it database credentials" — bad idea. One missing index + large table = hung query = frozen assistant. One hallucinated DELETE = disaster. No guardrails, no recovery.
postgres-mcp is an intelligent interface, not a connection wrapper:
| Problem | postgres-mcp Solution |
|---|---|
| Queries can hang forever | NEVERHANG — adaptive timeouts, circuit breaker |
| No visibility into database health | Health monitoring with degraded state detection |
| Failures cascade | Circuit breaker opens, queries fail fast, auto-recovery |
| All-or-nothing access | Granular: read-only default, table blacklist, permission tiers |
| AI can't verify its SQL | Schema introspection + natural language queries |
Prometheus tells you the database is on fire. NEVERHANG lets you walk through the fire without getting burned.
Philosophy
- Safety first — Read-only by default, write explicitly enabled
- Query safety — Statement timeouts, row limits, dangerous pattern blocking
- Schema awareness — Introspection without data exposure
- NEVERHANG — Circuit breaker, adaptive timeouts, health monitoring, graceful degradation
- Natural language — Ask questions in plain English, get SQL + results
Features
Natural Language (v0.6)
- pg_ask — Ask questions in plain English, get SQL + results
- Powered by Claude Sonnet for accurate SQL generation
- Automatic schema context gathering
- Fallback mode works without API key (returns schema for caller to generate SQL)
Perception (Read)
- Execute SELECT queries
- Schema introspection (tables, columns, indexes, constraints)
- pg_schema — Unified table view (columns + indexes + constraints in one call)
- pg_sample — Sample rows with blacklist filtering
- Explain query plans
- Database statistics
- Active connections and locks
Action (Write)
- INSERT, UPDATE, DELETE (permission-gated)
- DDL operations (permission-gated)
- Transaction support
Reliability (v0.5 NEVERHANG + v0.7 A.L.A.N.)
- Circuit breaker with automatic recovery
- Adaptive timeouts based on query complexity
- Health monitoring with degraded state handling
- Connection pool management
- A.L.A.N. persistence: Circuit state and query history survive restarts
Permission Model
CRITICAL: Database access requires careful permission management.
Permission Levels
| Level | Description | Default |
|---|---|---|
read |
SELECT queries, schema introspection | ON |
write |
INSERT, UPDATE, DELETE | OFF |
ddl |
CREATE, ALTER, DROP | OFF |
admin |
VACUUM, REINDEX, connection management | OFF |
Table/Schema Filtering
{
"permissions": {
"read": true,
"write": false,
"ddl": false,
"admin": false,
"whitelist_schemas": ["public", "app"],
"blacklist_schemas": ["pg_catalog", "information_schema"],
"whitelist_tables": [],
"blacklist_tables": [
"users.password_hash",
"secrets.*",
"*.credentials"
]
}
}
Rules:
- Blacklist always wins
- Column-level filtering supported
- Pattern matching:
schema.table.column
Query Safety
{
"query_safety": {
"statement_timeout": "30s",
"max_rows": 1000,
"block_patterns": [
"DROP DATABASE",
"TRUNCATE",
"DELETE FROM .* WHERE 1=1",
"UPDATE .* SET .* WHERE 1=1"
],
"require_where_clause": true
}
}
Bypass Mode
postgres-mcp --bypass-permissions
Full database access. DANGER ZONE.
Authentication
{
"connection": {
"host": "localhost",
"port": 5432,
"database": "myapp",
"user_env": "PGUSER",
"password_env": "PGPASSWORD",
"ssl": true
}
}
Or connection string:
{
"connection": {
"url_env": "DATABASE_URL"
}
}
Recommendation: Use a read-only database user for maximum safety.
Tools
Queries
pg_query
Execute a SELECT query.
pg_query({
query: string,
params?: any[], // parameterized queries
limit?: number, // override max_rows
timeout?: string // override statement_timeout
})
Returns:
{
"query": "SELECT name, email FROM users WHERE active = $1",
"params": [true],
"rows": [
{"name": "Alice", "email": "alice@example.com"},
{"name": "Bob", "email": "bob@example.com"}
],
"row_count": 2,
"execution_time": "12ms",
"summary": "2 active users found"
}
pg_execute
Execute INSERT/UPDATE/DELETE. Requires write permission.
pg_execute({
query: string,
params?: any[],
returning?: boolean // add RETURNING *
})
Returns:
{
"query": "UPDATE users SET active = $1 WHERE id = $2",
"params": [false, 123],
"affected_rows": 1,
"execution_time": "5ms"
}
Natural Language (v0.6)
pg_ask
Ask a question in natural language — translates to SQL and executes.
pg_ask({
question: string, // "How many users signed up this month?"
tables?: string[], // limit to specific tables
schema?: string, // default: "public"
timeout_ms?: number // override timeout
})
Returns:
{
"question": "How many users signed up this month?",
"generated_sql": "SELECT COUNT(*) FROM users WHERE created >= DATE_TRUNC('month', CURRENT_DATE)",
"rows": [{"count": "142"}],
"row_count": 1,
"execution_time": "3.2s"
}
Fallback mode: If ANTHROPIC_API_KEY is not set, returns schema context for the caller to generate SQL:
{
"mode": "fallback",
"message": "pg_ask fallback mode activated. To enable direct NL→SQL via Sonnet, add ANTHROPIC_API_KEY to ~/.claude.json under mcpServers.postgres-mcp.env",
"question": "How many users?",
"schema_context": "CREATE TABLE users (id, email, created...)",
"instructions": { "step_1": "Analyze schema", "step_2": "Generate SQL", "step_3": "Use pg_query" }
}
Schema Introspection
pg_tables
List tables with metadata.
pg_tables({
schema?: string, // default: "public"
pattern?: string // table name pattern
})
Returns:
{
"tables": [
{
"schema": "public",
"name": "users",
"type": "table",
"row_estimate": 15420,
"size": "2.3 MB",
"description": "User accounts"
}
]
}
pg_columns
Get column information for a table.
pg_columns({
table: string,
schema?: string
})
Returns:
{
"table": "users",
"columns": [
{
"name": "id",
"type": "integer",
"nullable": false,
"default": "nextval('users_id_seq')",
"primary_key": true
},
{
"name": "email",
"type": "varchar(255)",
"nullable": false,
"unique": true
}
]
}
pg_indexes
Get index information.
pg_indexes({
table?: string,
schema?: string
})
pg_constraints
Get constraint information (PK, FK, unique, check).
pg_constraints({
table?: string,
schema?: string,
type?: "PRIMARY KEY" | "FOREIGN KEY" | "UNIQUE" | "CHECK"
})
pg_schema
Get complete schema for a table (columns, indexes, constraints) in one call.
pg_schema({
table: string,
schema?: string // default: "public"
})
Returns:
{
"table": "users",
"columns": [...],
"indexes": [...],
"constraints": [...]
}
pg_sample
Get sample rows from a table (respects column blacklist).
pg_sample({
table: string,
schema?: string, // default: "public"
limit?: number, // default: 5, max: 20
order_by?: string // default: primary key
})
Returns:
{
"table": "users",
"sample_rows": [
{"id": 1, "email": "alice@example.com", "created": "2025-01-01"},
{"id": 2, "email": "bob@example.com", "created": "2025-01-02"}
],
"columns_shown": 3,
"columns_hidden": 1,
"note": "password column hidden (blacklisted)"
}
Query Analysis
pg_explain
Get query execution plan.
pg_explain({
query: string,
params?: any[],
analyze?: boolean, // actually run (careful!)
format?: "text" | "json"
})
Returns:
{
"query": "SELECT * FROM users WHERE email = $1",
"plan": {
"node_type": "Index Scan",
"index_name": "users_email_idx",
"estimated_rows": 1,
"estimated_cost": 0.42
},
"summary": "Uses index scan on users_email_idx, estimated 1 row"
}
Statistics
pg_stats
Get database/table statistics.
pg_stats({
table?: string, // specific table (omit for database)
include_index_usage?: boolean
})
pg_connections
Get active connections.
pg_connections({
include_queries?: boolean
})
pg_locks
Get current locks.
pg_locks({
blocked_only?: boolean
})
Analysis
pg_analyze_query
AI-powered query analysis.
pg_analyze_query({
query: string,
use_ai?: boolean
})
Returns:
{
"query": "SELECT * FROM orders WHERE user_id = 123",
"plan_summary": "Sequential scan on orders (15M rows)",
"synthesis": {
"analysis": "This query performs a full table scan. The user_id column is not indexed.",
"suggested_index": "CREATE INDEX orders_user_id_idx ON orders(user_id);",
"estimated_improvement": "~10,000x faster",
"confidence": "high"
}
}
pg_suggest_schema
Get schema improvement suggestions.
pg_suggest_schema({
table: string,
use_ai?: boolean
})
NEVERHANG v2.0 Architecture
Database queries can hang indefinitely. A missing index + large table = disaster. NEVERHANG is a multi-layered reliability system that ensures postgres-mcp never blocks your AI assistant.
Circuit Breaker
- Automatic trip: 3 failures in 60s → circuit opens
- Cooldown: 5 minute recovery period
- Health states:
healthy→degraded→unhealthy - Graceful degradation: Returns cached/safe responses when circuit is open
Adaptive Timeouts
- Query complexity analysis: Simple queries get shorter timeouts
- Pattern recognition: Known-slow patterns (JOINs, subqueries) get longer timeouts
- Learning: Adjusts based on historical query performance
- Override: Per-query timeout always available
Health Monitor
- Continuous ping: Background health checks
- State tracking: Monitors connection pool health
- Recovery detection: Automatic circuit close when health returns
- Metrics: Success rate, average latency, failure patterns
Connection Management
- Pool limits: Configurable min/max connections
- Idle timeout: Releases unused connections (default: 60s)
- Connection timeout: Fast fail on connection issues (default: 10s)
Row Limits
- Default max: 1000 rows
- Auto-LIMIT injection: Adds LIMIT to unbounded SELECTs
- Prevents: Accidental
SELECT *disasters
A.L.A.N. Persistence (v0.7)
As Long As Necessary — persistent memory for NEVERHANG:
- Circuit state survives restarts: No cold-start amnesia
- Query history tracking: 7 days of execution metrics
- P95 latency by complexity: Adaptive timeout learning
- Health check logs: 24 hours for trend analysis
- Location:
~/.cache/postgres-mcp/neverhang.db(XDG compliant) - Auto-cleanup: Prunes old data on startup
{
"neverhang": {
"statement_timeout": "30s",
"connect_timeout": "10s",
"max_rows": 1000,
"circuit_breaker": {
"failures": 3,
"window": 60000,
"cooldown": 300000
}
}
}
AI Integration (v0.6)
pg_ask uses Claude Sonnet to translate natural language to SQL.
Configuration: Add ANTHROPIC_API_KEY to your MCP server environment:
{
"mcpServers": {
"postgres-mcp": {
"command": "node",
"args": ["/path/to/postgres-mcp/dist/index.js"],
"env": {
"PGHOST": "localhost",
"PGDATABASE": "myapp",
"ANTHROPIC_API_KEY": "sk-ant-..."
}
}
}
}
Fallback mode: If no API key is set, pg_ask returns schema context with instructions for the caller to generate SQL. This allows the tool to provide value even without a separate API key.
Configuration
~/.config/postgres-mcp/config.json:
{
"connection": {
"host": "localhost",
"port": 5432,
"database": "myapp",
"user_env": "PGUSER",
"password_env": "PGPASSWORD"
},
"permissions": {
"read": true,
"write": false,
"ddl": false,
"admin": false,
"blacklist_tables": ["*.password*", "*.secret*"]
},
"query_safety": {
"statement_timeout": "30s",
"max_rows": 1000,
"require_where_clause": true
},
"fallback": {
"enabled": false
}
}
Claude Code Integration
{
"mcpServers": {
"postgres": {
"command": "postgres-mcp",
"env": {
"PGUSER": "readonly_user",
"PGPASSWORD": "secret"
}
}
}
}
Installation
npm install -g @arktechnwa/postgres-mcp
Requirements
- Node.js 18+
- PostgreSQL 12+
- Optional: Anthropic API key for fallback AI
Security Considerations
- Use read-only user — Create a DB user with SELECT-only grants
- Blacklist sensitive tables — Passwords, secrets, PII
- Statement timeout — Prevent runaway queries
- Row limits — Prevent accidental data dumps
- No credential exposure — Connection strings never logged
Credits
Created by Claude (claude@arktechnwa.com) in collaboration with Meldrey. Part of the ArktechNWA MCP Toolshed.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。