
ProdE AI ProdE AI makes is your 24/7 available pr
Preserves context across multiple codebases with AI capabilities. For more info visit https://app.prode.ai
README
ProdE MCP Server
ProdE |Documentation | Free access to all ProdE features for first month
ProdE is your 24x7 available production engineer, a multi-repository AI coding assistant that understands your entire codebase ecosystem, not just individual files.
What is ProdE MCP Server?
ProdE MCP Server bridges the gap between your codebase and AI coding assistants by providing deep contextual understanding of your repositories. Instead of working with generic code suggestions, get AI responses that understand your specific project structure, patterns, and history across multiple codebases.
Key Features
- Cross-Repository Insights: Query across multiple codebases simultaneously
- Improved AI Accuracy: AI understands your project structure and patterns
- Contextual Code Understanding: AI assistance based on your actual codebase, not generic examples
- Secure Integration: Token-based authentication with encrypted communication
- Wide Tool Compatibility: Supports 8+ popular coding assistants and editors
Use Cases
1. Multi-Repository Onboarding & System Understanding
Example: A new developer joins your team and needs to understand how user authentication flows through your 15+ microservices across frontend, backend, and mobile repositories.
What ProdE does: Simultaneously analyzes authentication patterns across all repositories in your knowledge layer to provide a complete cross-service authentication flow explanation.
2. Cross-Repository API Integration Discovery
Example: You're building a feature that needs to integrate with internal APIs scattered across different team repositories, but documentation is outdated or missing.
What ProdE does: Searches across all connected repositories to find current API definitions, real usage examples, and integration patterns from multiple services in one query.
3. Multi-Repo Impact Analysis for Refactoring
Example: You need to refactor a shared utility library used across 20+ repositories, but want to understand all usage patterns and potential breaking changes.
What ProdE does: Analyzes usage patterns across all repositories simultaneously to identify every implementation, dependency, and similar code that could be affected by your changes.
4. Distributed System Bug Investigation
Example: A production issue involves data flow through multiple services (payment-service, user-service, notification-service, audit-service), and you need to trace the complete request lifecycle.
What ProdE does: Connects the dots between all involved repositories to map the complete data flow, error handling, and logging patterns across your entire distributed system.
5. Cross-Project Architecture Pattern Analysis
Example: You're implementing caching for a new service and want to see what caching strategies, configurations, and patterns your team has successfully used across different projects.
What ProdE does: Analyzes caching implementations across all repositories in your knowledge layer to show proven patterns, configuration examples, and architectural decisions from your entire codebase ecosystem.
Available Tools
The ProdE MCP server provides the following tools:
get_all_repositories
- Retrieve information about all repositories in your knowledge layerask_specific_codebase
- Ask questions about a specific repository/codebaseask_all_codebases
- Ask questions across all your repositories
Supported Coding Assistants
Tool | Protocol | Configuration File | Status |
---|---|---|---|
Cursor | streamable-http , deeplink |
~/.cursor/mcp.json |
✅ Supported |
Cline | streamable-http |
cline_mcp_settings.json |
✅ Supported |
VS Code (GitHub Copilot) | streamable-http |
.vscode/mcp.json |
✅ Supported |
Windsurf | SSE |
~/.codeium/windsurf/mcp_config.json |
✅ Supported |
Augment Code | command-based |
settings.json |
✅ Supported |
RooCode | streamable-http |
mcp_settings.json |
✅ Supported |
Gemini CLI | HTTP URL |
~/.gemini/settings.json |
✅ Supported |
OpenHands | stdio |
MCP Configuration UI | ✅ Supported (Local only) |
Quick Start
1. Connect to Git Provider
- Sign up for a ProdE account
- Connect your git provider:
- GitHub ✅ Supported
- Bitbucket ✅ Supported
- GitLab 🚧 Coming soon
- Authorize ProdE to Read-only access of your repositories
2. Add Repositories to Knowledge Layer
- Browse your available repositories
- Select the repositories you want to add to your knowledge layer
- ProdE will analyze and index your selected codebases for contextual understanding
3. Get Your MCP Authentication Token
- Navigate to MCP Settings in your dashboard
- Copy your authentication token
- This token will be used to connect your coding assistant to the ProdE MCP server
4. Choose Your Integration
Select your preferred coding assistant from the supported tools above and follow the specific setup instructions.
Configuration Examples
Cursor (Recommended - One-Click Setup)
Option A: Deep Link (Automatic) Simply click the "Connect with Cursor" button in your ProdE dashboard for automatic setup.
Option B: Manual Configuration
{
"mcpServers": {
"prode-codebase-understanding": {
"type": "streamable-http",
"url": "https://api.prode.ai/code-parsing/v1/mcp/",
"note": "The mcp server provides codebase understanding by prode.",
"headers": {
"Authorization": "Bearer YOUR_TOKEN_HERE"
}
}
}
}
VS Code with GitHub Copilot
Create .vscode/mcp.json
in your project root:
{
"servers": {
"prode-codebase-understanding": {
"type": "http",
"url": "https://api.prode.ai/code-parsing/v1/mcp/",
"headers": {
"Authorization": "Bearer YOUR_TOKEN_HERE"
}
}
}
}
Cline
Create cline_mcp_settings.json
:
{
"mcpServers": {
"prode-codebase-understanding": {
"name": "Prode Codebase Understanding",
"type": "streamableHttp",
"url": "https://api.prode.ai/code-parsing/v1/mcp/",
"note": "The mcp server provides codebase understanding by prode.",
"headers": {
"Authorization": "Bearer YOUR_TOKEN_HERE"
},
"alwaysAllow": ["get_all_repositories", "ask_specific_codebase", "ask_all_codebases"],
"disabled": false
}
}
}
Windsurf
Create ~/.codeium/windsurf/mcp_config.json
:
{
"mcpServers": {
"prode-codebase-understanding": {
"command": "npx",
"args": [
"mcp-remote",
"https://api.prode.ai/code-parsing/v1/mcp/",
"--header",
"Authorization: Bearer YOUR_TOKEN_HERE"
]
}
}
}
OpenHands (Local Only)
Add to MCP configuration in OpenHands settings:
{
"sse_servers": [],
"stdio_servers": [
{
"name": "prode-codebase-understanding",
"command": "npx",
"args": [
"mcp-remote",
"https://api.prode.ai/code-parsing/v1/mcp/",
"--header",
"Authorization: Bearer YOUR_TOKEN_HERE"
],
"env": {}
}
],
"shttp_servers": []
}
Prerequisites
All Integrations
- Active ProdE account with repositories in knowledge layer
- Valid authentication token from ProdE dashboard
Support
- Documentation: https://docs.prode.ai
- Community: Join our discord community for support and updates
License
This project is licensed under the terms specified by ProdE. Please refer to the official documentation for license details.
Ready to enhance your coding experience? Get started by signing up for ProdE and connecting your first repository to the knowledge layer.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。