Product Data Tools MCP Server

Product Data Tools MCP Server

A basic MCP server setup guide demonstrating how to configure and run Python-based MCP servers with integration examples for Bright Data web scraping and Apify Actors for product data collection.

Category
访问服务器

README

first install dependencies using uv package

uv add requirements.txt 

you can use

python -m pip install requirements.txt

Basic MCP Project Setup

This repository contains the basic setup steps for a project utilizing uv for dependency management and environment setup, and configuring tools to be used within an MCP (Multi-tool Control Panel) environment, potentially like Claude Desktop.

Prerequisites

  • Python 3.7+ (recommended)
  • Network access to download uv and project dependencies.

Installation

This section guides you through setting up the uv tool and initializing your project environment.

1. Install uv

uv is used for managing Python environments and dependencies efficiently. Choose the command corresponding to your operating system.

Windows (PowerShell):

powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"

macOS / Linux (Bash):

curl -LsSf https://astral.sh/uv/install.sh | sh

After running the installation command, it's crucial to restart your terminal or command prompt to ensure the uv command is recognized in your PATH.

2. Project Setup

Now, let's create the project directory, set up the virtual environment, install necessary dependencies, and create the main server file.

macOS / Linux:

# Create a new directory for our project (e.g., 'weather')
uv init weather
# Navigate into the project directory
cd weather

# Create a virtual environment inside the project folder
uv venv
# Activate the virtual environment
source .venv/bin/activate

# Install project dependencies.
# mcp[cli] requires extra dependencies for the command-line interface.
uv add "mcp[cli]" httpx

# Create our server file (where your application code will reside)
touch weather.py

Windows (Command Prompt or PowerShell):

# Create a new directory for our project (e.g., 'weather')
uv init weather
# Navigate into the project directory
cd weather

# Create a virtual environment inside the project folder
uv venv
# Activate the virtual environment
.venv\Scripts\activate

# Install project dependencies.
# mcp[cli] requires extra dependencies for the command-line interface.
uv add mcp[cli] httpx

# Create our server file (where your application code will reside)
new-item weather.py

At this point, you have a project directory (j), a dedicated virtual environment (.venv), installed libraries (mcp[cli], httpx), and an empty file (``) where you can add your application logic.

Configuration (for Claude Desktop MCP)

If you are using this project with Claude Desktop or a similar MCP tool, you will need to configure it to recognize and run your tools. Below is an example of a configuration structure that defines how different tools are launched.

Note: The exact location and format of the MCP configuration file depend on the specific MCP software you are using (e.g., Claude Desktop's settings). The following is the content of a potential configuration section:

{
  "mcpServers": {
    "product_data_tools": {
      "command": "uv",
      "args": [
        "--directory",
        "C:\\Users\\asus4\\OneDrive\\Bureau\\mcp-Project\\project\\mcp-project",
        "run",
        "server.py"
      ]
    },
    "Bright Data": {
      "command": "npx",
      "args": ["@brightdata/mcp"],
      "env": {
        "API_TOKEN": "api_token",
        "WEB_UNLOCKER_ZONE": "unlocker_zone",
        "BROWSER_ZONE":"your BROWSER_ZONE"
      }
    },
    "actors-mcp-server": {
      "command": "npx",
      "args": [
        "-y",
        "@apify/actors-mcp-server",
        "--actors",
        "autofacts/shopify"
      ],
      "env": {
        "APIFY_TOKEN": "api_token"
      }
    }
  }
}
  • product_data_tools: This entry defines a tool that runs your Python server file (server.py, though in our setup we created weather.py - you'll need to adjust the args if you stick to weather.py). It uses uv run to execute the file within the virtual environment managed by uv. Remember to update the --directory path to the actual location of your project directory (weather) on your system.
  • Bright Data: Configures a tool that runs a Bright Data MCP server using npx. Requires specific environment variables for authentication and zone selection.
  • actors-mcp-server: Configures a tool that runs an Apify Actors MCP server using npx. Requires an API token.

After adding or updating the configuration file within your MCP software, save the file, and restart Claude for Desktop (or your specific MCP tool) for the changes to take effect.

Usage

Once the environment is set up and the MCP configuration is applied and the MCP tool is restarted, you should be able to interact with the configured tools (product_data_tools, Bright Data, actors-mcp-server) directly through the interface of your MCP software (e.g., Claude Desktop).

The specific way you "use" each tool depends on its implementation. For product_data_tools, you would typically interact with the API or functionality provided by the server.py file you created.

Visuals / Examples (Placeholder)

An image or screenshot demonstrating how to trigger or interact with the configured tools within the Claude Desktop (or your chosen MCP software) interface would be helpful here.

[Insert URL of relevant image here, or delete this section if no image is provided]

run servers

  uv run server.py
  uv run mcp_data_server.py

This README provides a clear, step-by-step guide for setting up the project and configuring it for use with an MCP tool based on your input. Remember to fill in any placeholders like specific paths or API tokens.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选