product-hunt-mcp
product-hunt-mcp
README
🚀 Product Hunt MCP Server
A plug-and-play MCP server for Product Hunt
📦 Quick Install
pip install product-hunt-mcp
🏃♂️ Quick Start Example
# Run the MCP server (requires PRODUCT_HUNT_TOKEN environment variable)
export PRODUCT_HUNT_TOKEN=your_token_here
product-hunt-mcp
✨ What is this?
Product Hunt MCP Server connects Product Hunt's API to any LLM or agent that speaks the Model Context Protocol (MCP). Perfect for AI assistants, chatbots, or your own automations!
- 🔍 Get posts, collections, topics, users
- 🗳️ Get votes, comments, and more
- 🛠️ Use with Claude Desktop, Cursor, or any MCP client
🛠️ Features
- Get detailed info on posts, comments, collections, topics, users
- Search/filter by topic, date, votes, etc.
- Paginated comments, user upvotes, and more
- Built with FastMCP for speed and compatibility
🧑💻 Who is this for?
- AI/LLM users: Plug into Claude Desktop, Cursor, or your own agent
- Developers: Build bots, dashboards, or automations with Product Hunt data
- Tinkerers: Explore the MCP ecosystem and build your own tools
🏁 Setup
Prerequisites
- Python 3.10+
- Product Hunt API token (get one here)
- You'll need to create an account on Product Hunt
- Navigate to the API Dashboard and create a new application
- Use the
Developer Tokenfor the token
Note: When creating a new application on Product Hunt, you will be asked for a
redirect_uri. While the MCP server does not use the redirect URI, it is a required field. You can enter any valid URL, such ashttps://localhost:8424/callback.
Installation
Preferred: uv (fast, modern Python installer)
# Install uv if you don't have it
pip install uv
Install from PyPI (recommended)
uv pip install product-hunt-mcp
# or
pip install product-hunt-mcp
Install from GitHub (latest main branch)
uv pip install 'git+https://github.com/jaipandya/producthunt-mcp-server.git'
# or
pip install 'git+https://github.com/jaipandya/producthunt-mcp-server.git'
Install locally from source
uv pip install .
# or
pip install .
🚀 Usage with Claude Desktop & Cursor
Once installed, the product-hunt-mcp command will be available. Add it to your Claude Desktop or Cursor configuration:
{
"mcpServers": {
"product-hunt": {
"command": "product-hunt-mcp",
"env": {
"PRODUCT_HUNT_TOKEN": "your_token_here"
}
}
}
}
- Replace
your_token_herewith your actual Product Hunt API token. - The token must be set as an environment variable in your Claude Desktop or Cursor config for the server to authenticate.
- Always restart your client (Claude Desktop/Cursor) after editing the config file.
Tip: On macOS, Claude Desktop may not always find the
product-hunt-mcpcommand if it's not in the default PATH. If you encounter issues, you can provide the full path to the executable. After installing, run:which product-hunt-mcpUse the output path in your Claude Desktop config, replacing
"command": "product-hunt-mcp"with the full path (e.g.,"command": "/Users/youruser/.local/bin/product-hunt-mcp").
Finding your configuration file
-
Claude Desktop:
- Windows:
%APPDATA%\claude-desktop\config.json - macOS:
~/Library/Application Support/claude-desktop/config.json - Linux:
~/.config/claude-desktop/config.json
- Windows:
-
Cursor:
- Windows:
%APPDATA%\Cursor\User\settings.json - macOS:
~/Library/Application Support/Cursor/User/settings.json - Linux:
~/.config/Cursor/User/settings.json
- Windows:
Docker
You can also run the server using Docker:
# Build the Docker image
docker build -t product-hunt-mcp .
# Run the Docker container (interactive for MCP)
docker run -i --rm -e PRODUCT_HUNT_TOKEN=your_token_here product-hunt-mcp
For Claude Desktop/Cursor integration with Docker, use this configuration:
{
"mcpServers": {
"product-hunt": {
"command": "docker",
"args": ["run", "-i", "--rm", "-e", "PRODUCT_HUNT_TOKEN=your_token_here", "product-hunt-mcp"],
"env": {}
}
}
}
Security Note: Your
PRODUCT_HUNT_TOKENis sensitive. Do not share it or commit it to version control.
🛠️ MCP Tools
| Tool | Description | Key Parameters |
|---|---|---|
| get_post_details | Get info about a specific post | id or slug, comments_count, comments_after |
| get_posts | Get posts with filters | topic, order, count, featured, posted_before, posted_after |
| get_comment | Get info about a specific comment | id (required) |
| get_post_comments | Get comments for a post | post_id or slug, order, count, after |
| get_collection | Get info about a collection | id or slug |
| get_collections | Get collections with filters | featured, user_id, post_id, order, count |
| get_topic | Get info about a topic | id or slug |
| search_topics | Search topics | query, followed_by_user_id, order, count |
| get_user | Get info about a user | id or username, posts_type, posts_count |
| get_viewer | Get info about the authenticated user | None |
| check_server_status | Check server/API status & authentication | None |
🏗️ Project Structure
product-hunt-mcp/
├── src/
│ └── product_hunt_mcp/ # Main package directory
│ ├── __init__.py
│ ├── cli.py # Command-line entry point
│ ├── api/ # API clients & queries
│ ├── schemas/ # Data validation schemas
│ ├── tools/ # MCP tool definitions
│ └── utils/ # Utility functions
├── pyproject.toml # Project metadata, dependencies, build config
├── README.md
├── CONTRIBUTING.md
├── CHANGELOG.md
├── Dockerfile
└── ... (config files, etc.)
🔄 Rate Limiting
The Product Hunt API has rate limits that this client respects. If you encounter rate limit errors, the client will inform you when the rate limit resets. You can check your current rate limit status using the get_api_rate_limits or check_server_status tools.
🐛 Troubleshooting
- Missing token: Ensure your
PRODUCT_HUNT_TOKENis correctly set as an environment variable. - Connection issues: Verify your internet connection and that the Product Hunt API is accessible.
- Rate limiting: If you hit rate limits, wait until the reset time or reduce your query frequency.
- Claude Desktop/Cursor not finding the server: Verify the path to your Python executable and restart the client.
🤝 Contributing
- PRs and issues welcome!
- Please follow PEP8 and use ruff for linting.
- See
pyproject.tomlfor dev dependencies.
🌐 Links
📝 Notes
- This project is not affiliated with Product Hunt.
- The Product Hunt API is subject to change.
📜 License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。