Production-Ready FastMCP Server
A production-grade MCP server and client implementation with comprehensive features including structured logging, health checks, metrics, authentication, and RAG capabilities with PostgreSQL vector search. Supports both stdio and SSE transports with containerization and security features for enterprise deployment.
README
MCP Server (FastMCP) and Client
Production-ready FastMCP server and a production-grade client with structured logging, env config, health checks, metrics, and containerization.
Features
- Server: Stdio and SSE runtimes via FastMCP, CORS & security headers, token auth, basic rate limiting
- Client: SSE and stdio transports, CLI to list tools/call tools/get resources, structured logs
- Structured JSON logging with
structlog - Env-based configuration
- Health endpoints and CLI checks
- Prometheus metrics primitives
- Dockerfile and Makefile
Requirements
- Python 3.9+
Setup
python3 -m venv .venv
. .venv/bin/activate
pip install -U pip
pip install -e .[dev]
Copy and adjust environment:
cp .env.example .env || true
Run (stdio)
mcp-server-stdio
Run (SSE)
mcp-server-sse # uses HOST, PORT, AUTH_TOKEN, CORS_ORIGINS
Health
mcp-server-health
Docker
docker build -t mcp-server:latest .
docker run --rm -p 8000:8000 -e AUTH_TOKEN=changeme mcp-server:latest
Client CLI
Environment (SSE example):
export MCP_CLIENT_TRANSPORT=sse
export MCP_SSE_URL=http://localhost:8000/sse
export AUTH_TOKEN=changeme # if server requires it
List tools:
mcpx list-tools
Call tool:
mcpx call-tool add --args '{"a": 1, "b": 2}'
Get resource:
mcpx get-resource time://now
Health check:
mcpx health
Security
- Set a strong
AUTH_TOKENin production for SSE mode - Restrict
CORS_ORIGINSto trusted origins - Run the container as non-root (Dockerfile does)
- Prefer TLS for SSE (
VERIFY_TLS=1) - Limit client network egress in production and rotate tokens regularly
RAG (Postgres + pgvector)
- Set
DATABASE_URL(orPG*envs) andOPENAI_API_KEY. - Enable
vectorextension in Postgres (the app will attempt to create it).
Ingest files via CLI:
python -m rag.cli ingest path/to/dir path/to/file.pdf
Ask a question via CLI:
python -m rag.cli ask "What does the document say about refunds?"
HTTP endpoints (when server running):
POST /rag/upload(multipart form withfiles)POST /rag/queryJSON{ "question": "..." }
MCP tool:
rag_ask(question: str) -> str
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。