Productive-GET-MCP
A Model Context Protocol (MCP) server for accessing Productive.io API endpoints (projects, tasks, comments, todos), tailored for read-only operations, providing streamlined access to essential data while minimizing token consumption
README
Productive.io MCP Server
A Model Context Protocol (MCP) server for accessing Productive.io API endpoints (projects, tasks, comments, todos) via GET operations. Built with FastMCP.
This implementation is tailored for read-only operations, providing streamlined access to essential data while minimizing token consumption. It is optimized for efficiency and simplicity, exposing only the necessary information. For a more comprehensive solution, consider BerwickGeek's implementation: Productive MCP by BerwickGeek.
Features
- Get Projects: Retrieve all projects
- Get Tasks: Retrieve all tasks
- Get Task by ID: Retrieve a specific task
- Get Comments: Retrieve all comments
- Get Comment by ID: Retrieve a specific comment
- Get Todos: Retrieve all todos
- Get Todo by ID: Retrieve a specific todo
- Filtered JSON Output: All responses are filtered to minimize output
Requirements
- Python 3.8+
- Productive API token
- FastMCP 2.0+
Installation
- Clone or download this repository
- Install dependencies:
pip install -r requirements.txt
or
uv venv && uv sync
Configuration
The server uses environment variables for configuration:
PRODUCTIVE_API_KEY: Your Productive API token (required)PRODUCTIVE_ORGANIZATION: Your Productive organization ID (required)PRODUCTIVE_BASE_URL: Base URL for Productive API (default: https://api.productive.io/api/v2)PRODUCTIVE_TIMEOUT: Request timeout in seconds (default: 30)
Usage
Direct Python Execution (Recommended)
"productive": {
"command": "python",
"args": [
"server.py"
],
"env": {
"PRODUCTIVE_API_KEY": "<api-key>",
"PRODUCTIVE_ORGANIZATION": "<organization-id>"
}
}
Using UV
"productive": {
"command": "uv",
"args": [
"--directory", "<path-to-productive-mcp>",
"run", "server.py"
],
"env": {
"PRODUCTIVE_API_KEY": "<api-key>",
"PRODUCTIVE_ORGANIZATION": "<organization-id"
}
},
Available Tools
get_projects
Retrieve all active projects. Returns paginated results with project details, attributes, and relationships.
Properties:
- No parameters (returns all projects)
get_tasks
Retrieve tasks with optional filtering and pagination.
Properties:
project_id(int, optional): Filter tasks by Productive project IDpage_number(int, optional): Page number for paginationpage_size(int, optional): Page size for paginationsort(str, optional): Sort parameter (e.g., 'last_activity_at', '-last_activity_at', 'created_at', 'due_date')extra_filters(dict, optional): Additional Productive API filters (e.g.,{'filter[status][eq]': 'open'})
get_task
Retrieve a specific task by ID.
Properties:
task_id(int): The unique Productive task identifier
get_comments
Retrieve comments with optional filtering and pagination.
Properties:
project_id(int, optional): Filter comments by Productive project IDtask_id(int, optional): Filter comments by Productive task IDpage_number(int, optional): Page number for paginationpage_size(int, optional): Page size for paginationextra_filters(dict, optional): Additional Productive API filters (e.g.,{'filter[discussion_id]': '123'})
get_comment
Retrieve a specific comment by ID.
Properties:
comment_id(int): The unique Productive comment identifier
get_todos
Retrieve todo checklist items with optional filtering and pagination.
Properties:
task_id(int, optional): Filter todos by Productive task IDpage_number(int, optional): Page number for paginationpage_size(int, optional): Page size for paginationextra_filters(dict, optional): Additional Productive API filters
get_todo
Retrieve a specific todo checklist item by ID.
Properties:
todo_id(int): The unique Productive todo checklist item identifier
Output Format
All tools return data in filtered JSON format for improved readability and LLM processing. The output is filtered to remove empty, null or redundant information.
data: Contains the main resource data (array for collections, object for single items)meta: Contains pagination and metadata informationincluded: Contains related resource data (when relationships are included)
Example JSON output for projects:
{
"data": [
{
"id": "628",
"type": "projects",
"attributes": {
"name": "test project",
"number": "1",
"project_type_id": 2,
"created_at": "2025-10-12T06:07:57.592+02:00",
"archived_at": null
},
"relationships": {
"organization": {
"data": {
"type": "organizations",
"id": "3003"
}
}
}
}
],
"meta": {
"current_page": 1,
"total_pages": 1,
"total_count": 3,
"page_size": 30,
"max_page_size": 200
}
}
Error Handling
The server provides comprehensive error handling:
- 401 Unauthorized: Invalid API token
- 404 Not Found: Resource not found
- 429 Rate Limited: Too many requests
- 500 Server Error: Productive API issues
All errors are logged via MCP context with appropriate severity levels.
Security
- API tokens are loaded from environment variables
- No sensitive data is logged
- HTTPS is used for all API requests
- Error messages don't expose internal details
License
MIT License.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。