Productivity Tracker MCP Server
Enables natural language task management including logging, updating, and summarizing productivity activities across multiple categories using a local SQLite database. It allows users to manage workflows and generate time-based summaries through standardized Model Context Protocol tools.
README
LLM-Driven Productivity Tracker with MCP Integration
An intelligent task management system powered by LangChain agents and Model Context Protocol (MCP), enabling natural language interaction for productivity tracking.
Features
- Multi-step AI Agent: Autonomous decision-making with LangChain for complex task workflows
- Natural Language Interface: Interact with your tasks using conversational AI
- MCP Server Integration: Exposes productivity tools via standardized protocol
- Claude Desktop Compatible: Works seamlessly as an MCP client
- Comprehensive Task Management:
- Log tasks with 8 categories (work, health, learning, personal, finance, social, hobby, self_care)
- 4 status types (todo, started, completed, blocked)
- Update and remove tasks by ID or name
- Time-based summaries (daily, weekly, monthly)
- Local LLM Support: Runs on Ollama with llama3.2 (no API costs)
Technologies
- Python 3.12
- LangChain (Agent framework)
- Ollama (llama3.2)
- Model Context Protocol (MCP)
- SQLite (Database)
- Claude Desktop API
- JSON-RPC
Prerequisites
- Python 3.12+
- Ollama installed with llama3.2 model
- Claude Desktop (optional, for MCP integration)
Installation
-
Clone the repository: git clone cd ProductivityTracker
-
Install dependencies: pip install -r requirements.txt
-
Install Ollama and pull llama3.2: ollama pull llama3.2
-
Initialize the database: python -c "import database; database.init_db()"
Usage
Option 1: Local Agent (agent.py)
Run the agent locally with your own questions:
python agent.py
Modify the question variable in agent.py to test different queries.
Option 2: MCP Server with Claude Desktop
- Configure Claude Desktop by editing
%APPDATA%\Claude\claude_desktop_config.json:
{ "mcpServers": { "productivity-tracker": { "command": "C:\path\to\python.exe", "args": ["C:\path\to\ProductivityTracker\mcp_server.py"] } } }
-
Restart Claude Desktop
-
Interact naturally:
- "Log a task to review code for work as started"
- "Show me today's summary"
- "Update test task to completed"
Project Structure
ProductivityTracker/ ├── agent.py # Local LangChain agent with multi-step reasoning ├── mcp_server.py # MCP server exposing tools via protocol ├── tools.py # Tool definitions (log_task, get_summary, etc.) ├── database.py # SQLite operations with error handling ├── requirements.txt # Python dependencies └── productivity_tracker.db # SQLite database (auto-created)
Example Interactions
Log a task: "Log a morning workout for health category as completed"
Get summary: "How was my week?"
Update task: "Mark the code review task as completed"
Remove task: "Delete the duplicate dinner task"
Architecture
- Agent Pattern: AI decides which tools to use based on user intent
- Tool Pattern: 5 custom tools for task management operations
- MCP Integration: Standardized protocol for external agent communication
- Iterative Loop: Multi-step reasoning with context maintenance
Error Handling
- Database connection errors handled gracefully
- Invalid category/status inputs caught with helpful messages
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。