Prometheus MCP Server
Enables AI assistants to query Prometheus metrics, monitor alerts, and analyze system health through read-only access to your Prometheus server with built-in query safety and optional AI-powered metric analysis.
README
prometheus-mcp
A Model Context Protocol (MCP) server for Prometheus integration. Give your AI assistant eyes on your metrics and alerts.
Status: Planning Author: Claude (claude@arktechnwa.com) + Meldrey License: MIT Organization: ArktechNWA
Why?
Your AI assistant can analyze code, but it can't see if your services are healthy. It can suggest optimizations, but can't see the actual latency metrics. It's blind to the alerts firing at 3am.
prometheus-mcp connects Claude to your Prometheus server — read-only, safe, insightful.
Philosophy
- Read-only by design — Prometheus queries don't mutate state
- Query safety — Timeout expensive queries, limit cardinality
- Never hang — PromQL can be expensive, always timeout
- Structured output — Metrics + human summaries
- Fallback AI — Haiku for anomaly detection and query help
Features
Perception (Read)
- Instant queries (current values)
- Range queries (over time)
- Alert status and history
- Target health
- Recording rules and alerts
- Label discovery
- Metric metadata
Analysis (AI-Assisted)
- "Is this metric normal?"
- "What caused this spike?"
- "Suggest a query for X"
- Anomaly detection
Permission Model
Prometheus is inherently read-only for queries. Permissions focus on:
| Level | Description | Default |
|---|---|---|
query |
Run PromQL queries | ON |
alerts |
View alert status | ON |
admin |
View config, reload rules | OFF |
Query Safety
{
"query_limits": {
"max_duration": "30s",
"max_resolution": "10000",
"max_series": 1000,
"blocked_metrics": [
"__.*",
"secret_.*"
]
}
}
Safety features:
- Query timeout enforcement
- Cardinality limits
- Metric blacklist patterns
- Rate limiting
Authentication
{
"prometheus": {
"url": "http://localhost:9090",
"auth": {
"type": "none" | "basic" | "bearer",
"username_env": "PROM_USER",
"password_env": "PROM_PASS",
"token_env": "PROM_TOKEN"
}
}
}
Tools
Queries
prom_query
Execute instant query (current values).
prom_query({
query: string, // PromQL expression
time?: string // evaluation time (default: now)
})
Returns:
{
"query": "up{job=\"api\"}",
"result_type": "vector",
"results": [
{
"metric": {"job": "api", "instance": "api-1:8080"},
"value": 1,
"timestamp": "2025-12-29T10:30:00Z"
}
],
"summary": "3 of 3 api instances are up"
}
prom_query_range
Execute range query (over time).
prom_query_range({
query: string,
start: string, // ISO timestamp or relative: "-1h"
end?: string, // default: now
step?: string // resolution: "15s", "1m", "5m"
})
Returns:
{
"query": "rate(http_requests_total[5m])",
"result_type": "matrix",
"results": [
{
"metric": {"handler": "/api/users"},
"values": [[1735470600, "123.45"], ...],
"stats": {
"min": 100.2,
"max": 456.7,
"avg": 234.5,
"current": 345.6
}
}
],
"summary": "Request rate ranged from 100-457 req/s over the last hour, currently 346 req/s"
}
prom_series
Find series matching label selectors.
prom_series({
match: string[], // label matchers
start?: string,
end?: string,
limit?: number
})
prom_labels
Get label names or values.
prom_labels({
label?: string, // get values for this label (omit for label names)
match?: string[], // filter by series
limit?: number
})
Alerts
prom_alerts
Get current alert status.
prom_alerts({
state?: "firing" | "pending" | "inactive",
filter?: string // alert name pattern
})
Returns:
{
"alerts": [
{
"name": "HighErrorRate",
"state": "firing",
"severity": "critical",
"summary": "Error rate > 5% for api service",
"started_at": "2025-12-29T10:15:00Z",
"duration": "15m",
"labels": {"job": "api", "severity": "critical"},
"annotations": {"summary": "..."}
}
],
"summary": "1 critical, 0 warning alerts firing"
}
prom_rules
Get alerting and recording rules.
prom_rules({
type?: "alert" | "record",
filter?: string
})
Targets
prom_targets
Get scrape target health.
prom_targets({
state?: "active" | "dropped",
job?: string
})
Returns:
{
"targets": [
{
"job": "api",
"instance": "api-1:8080",
"health": "up",
"last_scrape": "2025-12-29T10:29:45Z",
"scrape_duration": "0.023s",
"error": null
}
],
"summary": "12 of 12 targets healthy"
}
Discovery
prom_metadata
Get metric metadata (help, type, unit).
prom_metadata({
metric?: string, // specific metric (omit for all)
limit?: number
})
Analysis
prom_analyze
AI-powered metric analysis.
prom_analyze({
query: string,
question?: string, // "Is this normal?", "What caused the spike?"
use_ai?: boolean
})
Returns:
{
"query": "rate(http_errors_total[5m])",
"data_summary": {
"current": 12.3,
"1h_ago": 2.1,
"change": "+486%"
},
"synthesis": {
"analysis": "Error rate spiked 5x in the last hour. The spike correlates with deployment at 10:15. Errors are concentrated on /api/checkout endpoint.",
"suggested_queries": [
"rate(http_errors_total{handler=\"/api/checkout\"}[5m])",
"histogram_quantile(0.99, rate(http_request_duration_seconds_bucket[5m]))"
],
"confidence": "high"
}
}
prom_suggest_query
Get PromQL query suggestions.
prom_suggest_query({
intent: string // "show me api latency p99"
})
NEVERHANG Architecture
PromQL queries can be expensive. High-cardinality queries can OOM Prometheus.
Query Timeouts
- Default: 30s
- Configurable per-query
- Server-side timeout parameter
Cardinality Protection
- Limit series returned
- Block known expensive patterns
- Warn on high-cardinality queries
Circuit Breaker
- 3 timeouts in 60s → 5 minute cooldown
- Tracks Prometheus health
- Graceful degradation
{
"neverhang": {
"query_timeout": 30000,
"max_series": 1000,
"circuit_breaker": {
"failures": 3,
"window": 60000,
"cooldown": 300000
}
}
}
Fallback AI
Optional Haiku for metric analysis.
{
"fallback": {
"enabled": true,
"model": "claude-haiku-4-5",
"api_key_env": "PROM_MCP_FALLBACK_KEY",
"max_tokens": 500
}
}
When used:
prom_analyzewith questionsprom_suggest_queryfor natural language- Anomaly detection
Configuration
~/.config/prometheus-mcp/config.json:
{
"prometheus": {
"url": "http://localhost:9090",
"auth": {
"type": "none"
}
},
"permissions": {
"query": true,
"alerts": true,
"admin": false
},
"query_limits": {
"max_duration": "30s",
"max_series": 1000
},
"fallback": {
"enabled": false
}
}
Claude Code Integration
{
"mcpServers": {
"prometheus": {
"command": "prometheus-mcp",
"args": ["--config", "/path/to/config.json"]
}
}
}
Installation
npm install -g @arktechnwa/prometheus-mcp
Requirements
- Node.js 18+
- Prometheus server (2.x+)
- Optional: Anthropic API key for fallback AI
Credits
Created by Claude (claude@arktechnwa.com) in collaboration with Meldrey. Part of the ArktechNWA MCP Toolshed.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。