prometheus-rs

prometheus-rs

Query Prometheus from CLI or any MCP client, with retries, caching, and an optional metrics exporter.

Category
访问服务器

README

Prometheus MCP Server

Crates.io Docs.rs Release CI GitHub release Docker pulls License: Apache-2.0

A minimal Model Context Protocol (MCP) server focused on reading from Prometheus. It exposes Prometheus discovery and query tools to MCP-compatible apps and includes a convenient CLI for local queries.

Highlights

  • Instant and range queries via Prometheus HTTP API
  • Discovery helpers: list metrics, get metadata, series selectors, label values
  • Optional internal metrics exporter at /metrics (disabled by default)
  • Works as a stdio MCP server or a one-off CLI

Container images

Images are published to both Docker Hub and GHCR:

  • Docker Hub: brenoepics/prometheus-mcp
  • GHCR: ghcr.io/brenoepics/prometheus-mcp

Quickstart

Pick your preferred install method.

  • From crates.io (installs the prometheus-mcp binary):
cargo install prometheus-mcp
prometheus-mcp --help
  • Prebuilt binaries (GitHub Releases):

    • Download the latest release for your OS/arch: https://github.com/brenoepics/prometheus-mcp/releases
  • Docker (pull from Docker Hub or GHCR):

# Docker Hub
docker pull brenoepics/prometheus-mcp:latest
# or GHCR
docker pull ghcr.io/brenoepics/prometheus-mcp:latest

# Run the MCP server against a local Prometheus (pick one image)
docker run --rm -it brenoepics/prometheus-mcp:latest --mcp \
  --prometheus-url http://host.docker.internal:9090

Installation

Build from source (Rust):

cargo build --release
# binary at ./target/release/prometheus-mcp

Or build a Docker image locally:

docker build -t prometheus-mcp:latest .

Usage (CLI)

The CLI mirrors the tools exposed over MCP.

  • Instant query
prometheus-mcp query --query 'up' --prometheus-url http://localhost:9090
# optionally set an evaluation time
prometheus-mcp query --query 'up' --time '2025-09-27T12:00:00Z'
  • Range query
prometheus-mcp range --query 'rate(http_requests_total[5m])' \
  --start '2025-09-27T12:00:00Z' --end '2025-09-27T13:00:00Z' --step '30s'
  • List metric names
prometheus-mcp list-metrics
  • Metric metadata
prometheus-mcp metadata --metric 'up'
  • Series selectors (repeat --selector)
prometheus-mcp series --selector 'up' --selector 'node_cpu_seconds_total{mode="idle"}'
  • Label values
prometheus-mcp label-values --label 'job'

MCP server (stdio)

Start the MCP server over stdio:

prometheus-mcp --mcp --prometheus-url http://localhost:9090

Optional: enable internal metrics at /metrics (default off):

prometheus-mcp --mcp --metrics-exporter --metrics-port 9091

Running in Docker

Use the published image from Docker Hub (or GHCR alternative shown):

# Start the MCP server (macOS/Windows: host.docker.internal works; Linux see alternatives below)
docker run --rm -it brenoepics/prometheus-mcp:latest --mcp \
  --prometheus-url http://host.docker.internal:9090

Linux alternatives when Prometheus runs on the host:

# Use host networking (Linux only)
docker run --rm -it --network host brenoepics/prometheus-mcp:latest --mcp \
  --prometheus-url http://localhost:9090

# Without host network: map host gateway and use host.docker.internal
docker run --rm -it --add-host=host.docker.internal:host-gateway \
  brenoepics/prometheus-mcp:latest --mcp \
  --prometheus-url http://host.docker.internal:9090

One-off CLI in the container:

# Instant query
docker run --rm brenoepics/prometheus-mcp:latest query --query 'up' \
  --prometheus-url http://host.docker.internal:9090

# Range query
docker run --rm brenoepics/prometheus-mcp:latest range --query 'rate(http_requests_total[5m])' \
  --start '2025-09-27T12:00:00Z' --end '2025-09-27T13:00:00Z' --step '30s' \
  --prometheus-url http://host.docker.internal:9090

Basic Auth

Pass credentials via environment variables or CLI flags.

  • Environment variables:
export PROMETHEUS_URL=https://prom.example.com
export PROMETHEUS_USERNAME=api
export PROMETHEUS_PASSWORD=secret
prometheus-mcp --mcp
  • CLI flags:
prometheus-mcp --mcp \
  --prometheus-url https://prom.example.com \
  --prometheus-username api \
  --prometheus-password secret
  • Docker with env vars:
docker run --rm -it \
  -e PROMETHEUS_URL=https://prom.example.com \
  -e PROMETHEUS_USERNAME=api \
  -e PROMETHEUS_PASSWORD=secret \
  brenoepics/prometheus-mcp:latest --mcp

Configuration

All settings can be provided via environment variables; some also via flags.

Name Type Default CLI flag Description
PROMETHEUS_URL string (URL) http://localhost:9090 --prometheus-url Base URL of your Prometheus server
PROMETHEUS_TIMEOUT integer (seconds) 10 HTTP request timeout
PROMETHEUS_RETRIES integer 3 Number of retries for Prometheus API calls
PROMETHEUS_RETRY_BACKOFF_MS integer (ms) 500 Time to wait between retries
PROMETHEUS_MIN_INTERVAL_MS integer (ms) Minimum interval between query requests (basic rate limit)
PROMETHEUS_CACHE_TTL_SECS integer (seconds) TTL for simple in-process caches (list metrics and label values)
PROMETHEUS_USERNAME string --prometheus-username Basic auth username
PROMETHEUS_PASSWORD string --prometheus-password Basic auth password
boolean false --mcp Start MCP server over stdio
boolean false --metrics-exporter Enable internal Prometheus metrics at /metrics
integer (port) 9091 --metrics-port Port for /metrics when exporter is enabled

See docs/configuration.md for notes and examples.

Accessing from Claude Desktop

Follow the official guide to locate claude_desktop_config.json: https://modelcontextprotocol.io/quickstart/user#for-claude-desktop-users

Minimal Docker-based entry:

{
  "mcpServers": {
    "prometheus": {
      "command": "docker",
      "args": ["run", "--rm", "-i", "brenoepics/prometheus-mcp:latest"]
    }
  }
}

With host Prometheus and exporter (macOS/Windows):

{
  "mcpServers": {
    "prometheus": {
      "command": "docker",
      "args": [
        "run", "--rm", "-i",
        "-p", "9091:9091",
        "brenoepics/prometheus-mcp:latest",
        "--mcp",
        "--prometheus-url", "http://host.docker.internal:9090",
        "--metrics-exporter",
        "--metrics-port", "9091"
      ]
    }
  }
}

With Basic Auth via environment variables:

{
  "mcpServers": {
    "prometheus": {
      "command": "docker",
      "args": [
        "run", "--rm", "-i",
        "-e", "PROMETHEUS_URL=https://prom.example.com",
        "-e", "PROMETHEUS_USERNAME=api",
        "-e", "PROMETHEUS_PASSWORD=secret",
        "brenoepics/prometheus-mcp:latest", "--mcp"
      ]
    }
  }
}

More examples: see docs/claude-desktop.md.

Debugging

Use the MCP Inspector to exercise the server interactively:

npx @modelcontextprotocol/inspector

Connect with transport "STDIO", command prometheus-mcp, and optional args --mcp --prometheus-url http://localhost:9090.

Logs are appended to /tmp/mcp.jsonl; tail it with:

tail -f /tmp/mcp.jsonl

Security Considerations

  • The server does not provide authentication itself; when running outside stdio, keep it on localhost.
  • Handle credentials via environment variables or your secret manager. Avoid committing secrets.

License

Apache-2.0

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选