
Prompt Auto-Optimizer MCP
An MCP server that automatically optimizes AI prompts using evolutionary algorithms, helping improve prompt performance, creativity, and reliability through iterative testing and refinement.
Tools
gepa_start_evolution
Initialize evolution process with configuration and seed prompt
gepa_record_trajectory
Record execution trajectory for prompt evaluation
gepa_evaluate_prompt
Evaluate prompt candidate performance across multiple tasks
gepa_reflect
Analyze failures and generate prompt improvements
gepa_get_pareto_frontier
Retrieve optimal candidates from Pareto frontier
gepa_select_optimal
Select best prompt candidate for given context
gepa_create_backup
Create system backup including evolution state and trajectories
gepa_restore_backup
Restore system from a specific backup
gepa_list_backups
List available system backups
gepa_recovery_status
Get comprehensive disaster recovery status and health information
gepa_integrity_check
Perform comprehensive data integrity check
gepa_recover_component
Recover a specific GEPA component
README
Prompt Auto-Optimizer MCP
AI-Powered Prompt Evolution - An MCP server that automatically optimizes your AI prompts using evolutionary algorithms.
🎯 Purpose
Automatically evolve and optimize AI prompts to improve performance, creativity, and reliability. Uses genetic algorithms to iteratively improve prompts based on real performance data.
🛠️ Installation
# Clone and install
git clone https://github.com/your-org/prompt-auto-optimizer-mcp.git
cd prompt-auto-optimizer-mcp
npm install
npm run build
# Start the MCP server
npm run mcp:start
⚙️ Configuration
Add to your Claude Code settings (.claude/settings.json
):
{
"mcp": {
"servers": {
"prompt-optimizer": {
"command": "npx",
"args": ["prompt-auto-optimizer-mcp"],
"cwd": "./path/to/prompt-auto-optimizer-mcp"
}
}
}
}
🔧 Available Tools
Core Optimization Tools
gepa_start_evolution
Start optimizing a prompt using evolutionary algorithms.
{
taskDescription: string; // What you want to optimize for
seedPrompt?: string; // Starting prompt (optional)
config?: {
populationSize?: number; // How many variants to test (default: 20)
generations?: number; // How many iterations (default: 10)
mutationRate?: number; // How much to change prompts (default: 0.15)
};
}
gepa_evaluate_prompt
Test how well a prompt performs on specific tasks.
{
promptId: string; // Which prompt to test
taskIds: string[]; // What tasks to test it on
rolloutCount?: number; // How many times to test (default: 5)
}
gepa_reflect
Analyze why prompts fail and get improvement suggestions.
{
trajectoryIds: string[]; // Which test runs to analyze
targetPromptId: string; // Which prompt needs improvement
analysisDepth?: 'shallow' | 'deep'; // How detailed (default: 'deep')
}
gepa_get_pareto_frontier
Get the best prompt candidates that balance multiple goals.
{
minPerformance?: number; // Minimum quality threshold
limit?: number; // Max results to return (default: 10)
}
gepa_select_optimal
Choose the best prompt for your specific use case.
{
taskContext?: string; // Describe your use case
performanceWeight?: number; // How much to prioritize accuracy (default: 0.7)
diversityWeight?: number; // How much to prioritize creativity (default: 0.3)
}
gepa_record_trajectory
Log the results of prompt executions for analysis.
{
promptId: string; // Which prompt was used
taskId: string; // What task was performed
executionSteps: ExecutionStep[]; // What happened during execution
result: {
success: boolean; // Did it work?
score: number; // How well did it work?
};
}
Backup & Recovery Tools
gepa_create_backup
- Save current optimization stategepa_restore_backup
- Restore from a previous backupgepa_list_backups
- Show available backupsgepa_recovery_status
- Check system healthgepa_integrity_check
- Verify data integrity
📝 Basic Usage
- Start Evolution: Use
gepa_start_evolution
with your task description - Record Results: Use
gepa_record_trajectory
to log how prompts perform - Analyze Failures: Use
gepa_reflect
to understand what went wrong - Get Best Prompts: Use
gepa_select_optimal
to find the best candidates
🔧 Environment Variables
# Optional performance tuning
GEPA_MAX_CONCURRENT_PROCESSES=3 # Parallel execution limit
GEPA_DEFAULT_POPULATION_SIZE=20 # Default prompt variants
GEPA_DEFAULT_GENERATIONS=10 # Default iterations
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。