Prompt Auto-Optimizer MCP

Prompt Auto-Optimizer MCP

An MCP server that automatically optimizes AI prompts using evolutionary algorithms, helping improve prompt performance, creativity, and reliability through iterative testing and refinement.

Category
访问服务器

Tools

gepa_start_evolution

Initialize evolution process with configuration and seed prompt

gepa_record_trajectory

Record execution trajectory for prompt evaluation

gepa_evaluate_prompt

Evaluate prompt candidate performance across multiple tasks

gepa_reflect

Analyze failures and generate prompt improvements

gepa_get_pareto_frontier

Retrieve optimal candidates from Pareto frontier

gepa_select_optimal

Select best prompt candidate for given context

gepa_create_backup

Create system backup including evolution state and trajectories

gepa_restore_backup

Restore system from a specific backup

gepa_list_backups

List available system backups

gepa_recovery_status

Get comprehensive disaster recovery status and health information

gepa_integrity_check

Perform comprehensive data integrity check

gepa_recover_component

Recover a specific GEPA component

README

Prompt Auto-Optimizer MCP

AI-Powered Prompt Evolution - An MCP server that automatically optimizes your AI prompts using evolutionary algorithms.

TypeScript Node.js

🎯 Purpose

Automatically evolve and optimize AI prompts to improve performance, creativity, and reliability. Uses genetic algorithms to iteratively improve prompts based on real performance data.

🛠️ Installation

# Clone and install
git clone https://github.com/your-org/prompt-auto-optimizer-mcp.git
cd prompt-auto-optimizer-mcp
npm install
npm run build

# Start the MCP server
npm run mcp:start

⚙️ Configuration

Add to your Claude Code settings (.claude/settings.json):

{
  "mcp": {
    "servers": {
      "prompt-optimizer": {
        "command": "npx",
        "args": ["prompt-auto-optimizer-mcp"],
        "cwd": "./path/to/prompt-auto-optimizer-mcp"
      }
    }
  }
}

🔧 Available Tools

Core Optimization Tools

gepa_start_evolution

Start optimizing a prompt using evolutionary algorithms.

{
  taskDescription: string;           // What you want to optimize for
  seedPrompt?: string;              // Starting prompt (optional)
  config?: {
    populationSize?: number;        // How many variants to test (default: 20)
    generations?: number;           // How many iterations (default: 10)
    mutationRate?: number;         // How much to change prompts (default: 0.15)
  };
}

gepa_evaluate_prompt

Test how well a prompt performs on specific tasks.

{
  promptId: string;                 // Which prompt to test
  taskIds: string[];               // What tasks to test it on
  rolloutCount?: number;           // How many times to test (default: 5)
}

gepa_reflect

Analyze why prompts fail and get improvement suggestions.

{
  trajectoryIds: string[];         // Which test runs to analyze
  targetPromptId: string;          // Which prompt needs improvement
  analysisDepth?: 'shallow' | 'deep'; // How detailed (default: 'deep')
}

gepa_get_pareto_frontier

Get the best prompt candidates that balance multiple goals.

{
  minPerformance?: number;         // Minimum quality threshold
  limit?: number;                  // Max results to return (default: 10)
}

gepa_select_optimal

Choose the best prompt for your specific use case.

{
  taskContext?: string;            // Describe your use case
  performanceWeight?: number;      // How much to prioritize accuracy (default: 0.7)
  diversityWeight?: number;        // How much to prioritize creativity (default: 0.3)
}

gepa_record_trajectory

Log the results of prompt executions for analysis.

{
  promptId: string;                // Which prompt was used
  taskId: string;                  // What task was performed
  executionSteps: ExecutionStep[]; // What happened during execution
  result: {
    success: boolean;              // Did it work?
    score: number;                 // How well did it work?
  };
}

Backup & Recovery Tools

  • gepa_create_backup - Save current optimization state
  • gepa_restore_backup - Restore from a previous backup
  • gepa_list_backups - Show available backups
  • gepa_recovery_status - Check system health
  • gepa_integrity_check - Verify data integrity

📝 Basic Usage

  1. Start Evolution: Use gepa_start_evolution with your task description
  2. Record Results: Use gepa_record_trajectory to log how prompts perform
  3. Analyze Failures: Use gepa_reflect to understand what went wrong
  4. Get Best Prompts: Use gepa_select_optimal to find the best candidates

🔧 Environment Variables

# Optional performance tuning
GEPA_MAX_CONCURRENT_PROCESSES=3           # Parallel execution limit
GEPA_DEFAULT_POPULATION_SIZE=20            # Default prompt variants
GEPA_DEFAULT_GENERATIONS=10               # Default iterations

Built for better AI prompts📚 Docs🐛 Issues

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选