PromptArchitect MCP

PromptArchitect MCP

Refines and improves AI prompts using workspace-aware context from your project's tech stack, structure, and dependencies. Includes tools to analyze prompt quality and generate well-structured prompts from raw ideas.

Category
访问服务器

README

@merabylabs/promptarchitect-mcp

npm version MCP Compatible

A Model Context Protocol (MCP) server that refines your prompts using PromptArchitect's AI-powered prompt engineering. Simply pass your current prompt and get an improved version back.

Works with: Claude Desktop • VS Code (Copilot) • Cursor • Windsurf • Zed • JetBrains IDEs • Continue.dev • Cline

✨ Why PromptArchitect MCP?

🎯 Workspace-Aware Refinement

Unlike generic prompt tools, PromptArchitect understands your project context. When refining prompts, it considers:

  • Your tech stack — React, Node, Python, or whatever you're building with
  • Project structure — File organization, naming conventions, architecture patterns
  • Dependencies — Libraries and frameworks from your package.json/requirements.txt
  • Your original request — Ensures refined prompts stay aligned with your actual goal

This means prompts are tailored to your specific codebase, not generic boilerplate.

🚀 Key Benefits

  • No API key required — Free to use, powered by PromptArchitect backend
  • Works in your IDE — Integrates with your existing workflow via MCP
  • Context-aware — Prompts that understand your project conventions
  • Iterative refinement — Keep improving until it's perfect

Features

🛠️ Tools

Tool Description
refine_prompt Improve your current prompt based on feedback and your workspace context
analyze_prompt Evaluate prompt quality with scores and improvement suggestions
generate_prompt Transform a raw idea into a well-structured prompt tailored to your project

📦 Resources

  • Template Library: Reference templates for coding, writing, research, and analysis tasks
  • Category Collections: Browse templates by category for inspiration

Installation

npm install @merabylabs/promptarchitect-mcp

Or install globally:

npm install -g @merabylabs/promptarchitect-mcp

Usage

PromptArchitect MCP server works with any IDE or application that supports the Model Context Protocol. Below are configuration examples for popular editors.

No API key required! The MCP server uses the PromptArchitect backend API, so you don't need your own Gemini API key.


Claude Desktop

Add to your Claude Desktop configuration file:

  • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
  • Windows: %APPDATA%\Claude\claude_desktop_config.json
{
  "mcpServers": {
    "promptarchitect": {
      "command": "npx",
      "args": ["@merabylabs/promptarchitect-mcp"]
    }
  }
}

VS Code (GitHub Copilot)

Add to your VS Code settings.json (Cmd/Ctrl+Shift+P → "Preferences: Open Settings (JSON)"):

{
  "github.copilot.chat.mcp.servers": {
    "promptarchitect": {
      "command": "npx",
      "args": ["@merabylabs/promptarchitect-mcp"]
    }
  }
}

Cursor

Add to your Cursor MCP settings:

  • macOS/Linux: ~/.cursor/mcp.json
  • Windows: %USERPROFILE%\.cursor\mcp.json
  • Or via: Settings → MCP
{
  "mcpServers": {
    "promptarchitect": {
      "command": "npx",
      "args": ["@merabylabs/promptarchitect-mcp"]
    }
  }
}

📖 Cursor MCP Documentation


Windsurf (Codeium)

Add to your Windsurf MCP configuration:

  • macOS/Linux: ~/.codeium/windsurf/mcp_config.json
  • Windows: %USERPROFILE%\.codeium\windsurf\mcp_config.json
{
  "mcpServers": {
    "promptarchitect": {
      "command": "npx",
      "args": ["@merabylabs/promptarchitect-mcp"]
    }
  }
}

📖 Windsurf MCP Documentation


Zed

Add to your Zed settings:

  • macOS: ~/.config/zed/settings.json
  • Linux: ~/.config/zed/settings.json
{
  "context_servers": {
    "promptarchitect": {
      "command": {
        "path": "npx",
        "args": ["@merabylabs/promptarchitect-mcp"]
      },
      "settings": {}
    }
  }
}

📖 Zed MCP Documentation


JetBrains IDEs

Works with IntelliJ IDEA, PyCharm, WebStorm, PhpStorm, GoLand, RubyMine, CLion, DataGrip, Rider, Android Studio.

  1. Install the MCP Client plugin from JetBrains Marketplace
  2. Go to Settings → Tools → MCP Servers
  3. Add a new server with this configuration:
{
  "mcpServers": {
    "promptarchitect": {
      "command": "npx",
      "args": ["@merabylabs/promptarchitect-mcp"]
    }
  }
}

Or add to .idea/mcp.json in your project.

📖 JetBrains MCP Plugin


Continue.dev

Add to your Continue configuration:

  • Global: ~/.continue/config.json
  • Project: .continue/config.json
{
  "experimental": {
    "modelContextProtocolServers": [
      {
        "transport": {
          "type": "stdio",
          "command": "npx",
          "args": ["@merabylabs/promptarchitect-mcp"]
        }
      }
    ]
  }
}

📖 Continue MCP Documentation


Cline (VS Code Extension)

Open Cline Settings → MCP Servers, or edit cline_mcp_settings.json:

{
  "mcpServers": {
    "promptarchitect": {
      "command": "npx",
      "args": ["@merabylabs/promptarchitect-mcp"],
      "disabled": false
    }
  }
}

📖 Cline MCP Documentation


Other MCP-Compatible Applications

Any application supporting MCP can use this server. The standard configuration is:

Property Value
Command npx
Args ["@merabylabs/promptarchitect-mcp"]

For global installation, use promptarchitect-mcp as the command after running:

npm install -g @merabylabs/promptarchitect-mcp

Programmatic Usage

import { refinePrompt, analyzePrompt } from '@promptarchitect/mcp-server';

// Refine an existing prompt
const result = await refinePrompt({
  prompt: 'Write code to sort an array',
  feedback: 'Make it more specific about language and edge cases',
});

console.log(result.refinedPrompt);
// => "Write a TypeScript function that sorts an array of numbers..."

// Analyze prompt quality
const analysis = await analyzePrompt({
  prompt: 'Help me with my code',
});
console.log(analysis.scores); // { overall: 45, clarity: 50, ... }
console.log(analysis.suggestions); // ["Be more specific about...", ...]

Configuration

Environment Variables

Variable Required Description
LOG_LEVEL No Logging level: debug, info, warn, error. Default: info

Tool Reference

refine_prompt

Improve an existing prompt based on feedback. This is the primary tool.

Input:

{
  "prompt": "Write code",
  "feedback": "Make it more specific and add examples",
  "preserveStructure": true
}

Output:

{
  "refinedPrompt": "Write a TypeScript function that...",
  "changes": ["Added specificity", "Included example"],
  "metadata": {
    "originalWordCount": 2,
    "refinedWordCount": 45
  }
}

analyze_prompt

Evaluate prompt quality and get improvement suggestions.

Input:

{
  "prompt": "You are a helpful assistant. Help me write code."
}

Output:

{
  "scores": {
    "overall": 65,
    "clarity": 70,
    "specificity": 50,
    "structure": 60,
    "actionability": 80
  },
  "suggestions": [
    "Add more specific details about the code",
    "Include examples of expected output"
  ],
  "strengths": ["Clear action verb"],
  "weaknesses": ["Lacks specificity"]
}

generate_prompt

Transform a raw idea into a well-structured prompt.

Input:

{
  "idea": "Create a code review assistant",
  "template": "coding",
  "context": "For TypeScript projects"
}

Output:

{
  "prompt": "You are a senior code reviewer...",
  "metadata": {
    "template": "coding",
    "wordCount": 150,
    "hasStructure": true
  }
}

Development

Building

npm install
npm run build

Testing

npm test

Running Locally

npm start

Architecture

mcp-server/
├── src/
│   ├── tools/           # MCP tools (refine, analyze, generate)
│   ├── resources/       # Template library for reference
│   ├── utils/           # Gemini client, logger
│   ├── server.ts        # MCP server configuration
│   ├── cli.ts           # CLI entry point
│   └── index.ts         # Main exports
└── examples/            # Configuration examples

License

Proprietary - © 2025 Meraby Labs. All rights reserved.

This software is provided for use exclusively with the PromptArchitect service. Unauthorized copying, modification, distribution, or use outside the intended scope is prohibited.

Related

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选