Promptheus
Refines and optimizes prompts for LLMs through adaptive questioning and intelligent clarification workflows. Supports multiple AI providers (Google, OpenAI, Anthropic, Groq, Qwen) with interactive prompt enhancement and targeted modifications.
README
Promptheus
Refine and optimize prompts for LLMs
<!-- mcp-name: io.github.abhichandra21/promptheus -->
Quick Start
pip install promptheus
# Interactive session
promptheus
# Single prompt
promptheus "Write a technical blog post"
# Skip clarifying questions
promptheus -s "Explain Kubernetes"
# Use web UI
promptheus web
What is Promptheus?
Promptheus analyzes your prompts and refines them with:
- Adaptive questioning: Smart detection of what information you need to provide
- Multi-provider support: Works with Google, OpenAI, Anthropic, Groq, Qwen, and more
- Interactive refinement: Iteratively improve outputs through natural conversation
- Session history: Automatically track and reuse past prompts
- CLI and Web UI: Use from terminal or browser
Supported Providers
| Provider | Models | Setup |
|---|---|---|
| Google Gemini | gemini-2.0-flash, gemini-1.5-pro | API Key |
| Anthropic Claude | claude-3-5-sonnet, claude-3-opus | Console |
| OpenAI | gpt-4o, gpt-4-turbo | API Key |
| Groq | llama-3.3-70b, mixtral-8x7b | Console |
| Alibaba Qwen | qwen-max, qwen-plus | DashScope |
| Zhipu GLM | glm-4-plus, glm-4-air | Console |
| OpenRouter | openrouter/auto (auto-routing) | Dashboard |
OpenRouter integration in Promptheus is optimized around the openrouter/auto routing model:
- Model listing is intentionally minimal: Promptheus does not expose your full OpenRouter account catalog.
- You can still specify a concrete model manually with
OPENROUTER_MODELor--modelif your key has access.
Core Features
🧠 Adaptive Task Detection Automatically detects whether your task needs refinement or direct optimization
⚡ Interactive Refinement Ask targeted questions to elicit requirements and improve outputs
📝 Pipeline Integration Works seamlessly in Unix pipelines and shell scripts
🔄 Session Management Track, load, and reuse past prompts automatically
📊 Telemetry & Analytics Anonymous usage and performance metrics tracking for insights (local storage only, can be disabled)
🌐 Web Interface Beautiful UI for interactive prompt refinement and history management
Configuration
Create a .env file with at least one provider API key:
GOOGLE_API_KEY=your_key_here
ANTHROPIC_API_KEY=your_key_here
OPENAI_API_KEY=your_key_here
Or run the interactive setup:
promptheus auth
Examples
Content Generation
promptheus "Write a blog post about async programming"
# System asks: audience, tone, length, key topics
# Generates refined prompt with all specifications
Code Analysis
promptheus -s "Review this function for security issues"
# Skips questions, applies direct enhancement
Interactive Session
promptheus
/set provider anthropic
/set model claude-3-5-sonnet
# Process multiple prompts, switch providers/models with /commands
Pipeline Integration
echo "Create a REST API schema" | promptheus | jq '.refined_prompt'
cat prompts.txt | while read line; do promptheus "$line"; done
Testing & Examples: See sample_prompts.md for test prompts demonstrating adaptive task detection (analysis vs generation).
Telemetry & Analytics
# View telemetry summary (anonymous metrics about usage and performance)
promptheus telemetry summary
# Disable telemetry if desired
export PROMPTHEUS_TELEMETRY_ENABLED=0
# Customize history storage location
export PROMPTHEUS_HISTORY_DIR=~/.custom_promptheus
MCP Server
Promptheus includes a Model Context Protocol (MCP) server that exposes prompt refinement capabilities as standardized tools for integration with MCP-compatible clients.
What the MCP Server Does
The Promptheus MCP server provides:
- Prompt refinement with Q&A: Intelligent prompt optimization through adaptive questioning
- Prompt tweaking: Surgical modifications to existing prompts
- Model/provider inspection: Discovery and validation of available AI providers
- Environment validation: Configuration checking and connectivity testing
Starting the MCP Server
# Start the MCP server
promptheus mcp
# Or run directly with Python
python -m promptheus.mcp_server
Prerequisites:
- MCP package installed:
pip install mcp(included in requirements.txt) - At least one provider API key configured (see Configuration)
Available MCP Tools
refine_prompt
Intelligent prompt refinement with optional clarification questions.
Inputs:
prompt(required): The initial prompt to refineanswers(optional): Dictionary mapping question IDs to answers{q0: "answer", q1: "answer"}answer_mapping(optional): Maps question IDs to original question textprovider(optional): Override provider (e.g., "google", "openai")model(optional): Override model name
Response Types:
{"type": "refined", "prompt": "...", "next_action": "..."}: Success with refined prompt{"type": "clarification_needed", "questions_for_ask_user_question": [...], "answer_mapping": {...}}: Questions needed{"type": "error", "error_type": "...", "message": "..."}: Error occurred
tweak_prompt
Apply targeted modifications to existing prompts.
Inputs:
prompt(required): Current prompt to modifymodification(required): Description of changes (e.g., "make it shorter")provider,model(optional): Provider/model overrides
Returns:
{"type": "refined", "prompt": "..."}: Modified prompt
list_models
Discover available models from configured providers.
Inputs:
providers(optional): List of provider names to querylimit(optional): Max models per provider (default: 20)include_nontext(optional): Include vision/embedding models
Returns:
{"type": "success", "providers": {"google": {"available": true, "models": [...]}}}
list_providers
Check provider configuration status.
Returns:
{"type": "success", "providers": {"google": {"configured": true, "model": "..."}}}
validate_environment
Test environment configuration and API connectivity.
Inputs:
providers(optional): Specific providers to validatetest_connection(optional): Test actual API connectivity
Returns:
{"type": "success", "validation": {"google": {"configured": true, "connection_test": "passed"}}}
Prompt Refinement Workflow with Q&A
The MCP server supports a structured clarification workflow for optimal prompt refinement:
Step 1: Initial Refinement Request
{
"tool": "refine_prompt",
"arguments": {
"prompt": "Write a blog post about machine learning"
}
}
Step 2: Handle Clarification Response
{
"type": "clarification_needed",
"task_type": "generation",
"message": "To refine this prompt effectively, I need to ask...",
"questions_for_ask_user_question": [
{
"question": "Who is your target audience?",
"header": "Q1",
"multiSelect": false,
"options": [
{"label": "Technical professionals", "description": "Technical professionals"},
{"label": "Business executives", "description": "Business executives"}
]
}
],
"answer_mapping": {
"q0": "Who is your target audience?"
}
}
Step 3: Collect User Answers
Use your MCP client's AskUserQuestion tool with the provided questions, then map answers to question IDs.
Step 4: Final Refinement with Answers
{
"tool": "refine_prompt",
"arguments": {
"prompt": "Write a blog post about machine learning",
"answers": {"q0": "Technical professionals"},
"answer_mapping": {"q0": "Who is your target audience?"}
}
}
Response:
{
"type": "refined",
"prompt": "Write a comprehensive technical blog post about machine learning fundamentals targeted at software engineers and technical professionals. Include practical code examples and architectural patterns...",
"next_action": "This refined prompt is now ready to use. If the user asked you to execute/run the prompt, use this refined prompt directly with your own capabilities..."
}
AskUser Integration Contract
The MCP server operates in two modes:
Interactive Mode (when AskUserQuestion is available):
- Automatically asks clarification questions via injected AskUserQuestion function
- Returns refined prompt immediately after collecting answers
- Seamless user experience within supported clients
Structured Mode (fallback for all clients):
- Returns
clarification_neededresponse with formatted questions - Client responsible for calling AskUserQuestion tool
- Answers mapped back via
answer_mappingdictionary
Question Format:
Each question in questions_for_ask_user_question includes:
question: The question text to displayheader: Short identifier (Q1, Q2, etc.)multiSelect: Boolean for multi-select optionsoptions: Array of{label, description}for radio/checkbox questions
Answer Mapping:
- Question IDs follow pattern:
q0,q1,q2, etc. - Answers dictionary uses these IDs as keys:
{"q0": "answer", "q1": "answer"} answer_mappingpreserves original question text for provider context
Troubleshooting MCP
MCP Package Not Installed
Error: The 'mcp' package is not installed. Please install it with 'pip install mcp'.
Fix: pip install mcp or install Promptheus with dev dependencies: pip install -e .[dev]
Missing Provider API Keys
{
"type": "error",
"error_type": "ConfigurationError",
"message": "No provider configured. Please set API keys in environment."
}
Diagnosis: Use list_providers or validate_environment tools to check configuration status
Provider Misconfiguration
{
"type": "success",
"providers": {
"google": {"configured": false, "error": "GOOGLE_API_KEY not found"},
"openai": {"configured": true, "model": "gpt-4o"}
}
}
Fix: Set missing API keys in .env file or environment variables
Connection Test Failures
{
"type": "success",
"validation": {
"google": {
"configured": true,
"connection_test": "failed: Authentication error"
}
}
}
Fix: Verify API keys are valid and have necessary permissions
Full Documentation
Quick reference: promptheus --help
Comprehensive guides:
- 📖 Installation & Setup
- 🚀 Usage Guide
- 🔧 Configuration
- ⌨️ CLI Reference
- 🌐 Web UI Guide
- 🔌 Provider Setup
Development
git clone https://github.com/abhichandra21/Promptheus.git
cd Promptheus
pip install -e ".[dev]"
pytest -q
See CLAUDE.md for detailed development guidance.
License
MIT License - see LICENSE for details
Contributing
Contributions welcome! Please see our development guide for contribution guidelines.
Questions? Open an issue | Live demo: promptheus web
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。