Proofly MCP Integration

Proofly MCP Integration

An MCP server that provides deepfake detection capabilities, allowing clients to analyze images for authenticity via Proofly's API.

Category
访问服务器

Tools

analyze-image

Analyzes an image provided as a base64 string for deepfake detection.

analyze

Analyzes an image from a URL for deepfake detection.

check-session-status

Check the status of a deepfake analysis session.

get-face-details

Get detailed information about a specific face detected in an image.

README

Proofly MCP Integration

This document describes two ways to integrate Proofly's deepfake detection capabilities with Model Context Protocol (MCP) compatible clients:

  1. Via a Hosted MCP Server (https://mcp.proofly.ai): For clients that connect to MCP servers using a URL (e.g., Cursor, Cascade/Windsurf).
  2. Via a Local CLI MCP Server (proofly-mcp npm package): For clients that can execute a local command for an MCP server (e.g., Claude Desktop).

Both integration methods ultimately use the Proofly API (https://api.proofly.ai) for analysis.


1. Using the Hosted MCP Server (https://mcp.proofly.ai)

This is the recommended method for MCP clients that connect to servers via HTTP/SSE URLs, such as Cursor, Cascade/Windsurf, etc.

Configuration Examples (for URL-based clients)

Add one of the following configurations to your MCP client (e.g., in mcp_config.json):

A. Streaming (SSE - Recommended where supported):

{
  "proofly": {
    "serverUrl": "https://mcp.proofly.ai/sse",
    "supportedMethods": [
      "analyze-image",
      "analyze",
      "get-face-details",
      "check-session-status"
    ],
    "auth": { "type": "none" } // Or your specific auth if Proofly API https:/get.proofly.ai requires it
  }
}

B. Standard HTTP (Non-streaming):

{
  "proofly": {
    "serverUrl": "https://mcp.proofly.ai/mcp",
    "supportedMethods": [
      "analyze-image",
      "analyze",
      "get-face-details",
      "check-session-status"
    ],
    "auth": { "type": "none" } // Or your specific auth if Proofly API https:/get.proofly.ai requires it
  }
}

Note: The mcp.proofly.ai server is a separate deployment. This proofly-mcp npm package is not used to run or configure mcp.proofly.ai.


2. Using the Local CLI MCP Server (proofly-mcp npm package)

This proofly-mcp npm package provides a command-line tool that acts as an MCP server. It's designed for MCP clients that can execute a local command and communicate with it via stdio (e.g., Claude Desktop).

Features of proofly-mcp CLI

  • Acts as a local MCP server communicating via stdio.
  • Analyzes images for deepfake detection (from Base64 or URL).
  • Checks session status for an analysis.
  • Gets detailed information about specific detected faces.

Installation of proofly-mcp CLI

Global Installation (Recommended for direct use by clients like Claude Desktop):

npm install -g proofly-mcp

Local Installation (For programmatic use or if preferred):

npm install proofly-mcp

Environment Variables for proofly-mcp CLI (Optional)

  • PROOFLY_API_KEY: Your Proofly API key. The proofly-mcp CLI will use this API key if the variable is set when communicating with Proofly API https://get.proofly.ai.

Configuration Examples (for command-based clients using proofly-mcp)

Claude Desktop:

Add to your Claude Desktop config file (e.g., claude_desktop_config.json). The recommended way is to use npx to ensure you are running the latest version without requiring a global install:

{
  "mcpServers": {
    "proofly": {
      "command": "npx",
      "args": [
        "-y", // The -y flag might be specific to your npm/npx version or aliasing for auto-confirmation.
              // Alternatively, for most npx versions: "proofly-mcp@latest"
        "proofly-mcp@latest"
      ],
      "supportedMethods": [
        "analyze-image",
        "analyze",
        "get-face-details",
        "check-session-status"
      ]
    }
  }
}

Alternatively, if you have proofly-mcp installed globally (npm install -g proofly-mcp), you can use:

{
  "mcpServers": {
    "proofly": {
      "command": "proofly-mcp",
      "args": [],
      "supportedMethods": [
        "analyze-image",
        "analyze",
        "get-face-details",
        "check-session-status"
      ]
    }
  }
}
  • Claude Desktop will execute the specified command, which then acts as the MCP server.

Other command-capable MCP Clients:

If your MCP client can launch a local command, configure it to run proofly-mcp. Conceptual example (actual config varies by client):

{
  "mcpServers": {
    "proofly": {
      "type": "command",
      "command": "proofly-mcp",
      "supportedMethods": [
        "analyze-image",
        "analyze",
        "get-face-details",
        "check-session-status"
      ]
    }
  }
}

Available MCP Methods

The following methods are supported by both the https://mcp.proofly.ai hosted server and the proofly-mcp CLI server.

analyze-image

Analyzes an image provided as a base64 string for deepfake detection.

Parameters:

  • imageBase64: string - Base64 encoded image data.
  • filename: string - Original filename with extension (e.g., 'image.jpg').
  • format: "text" | "json" (optional, default: "text") - Output format.

analyze

Analyzes an image from a URL for deepfake detection.

Parameters:

  • imageUrl: string - URL of the image to analyze.
  • format: "text" | "json" (optional, default: "text") - Output format.

check-session-status

Checks the status of a deepfake analysis session.

Parameters:

  • sessionUuid: string - Session UUID to check status for.
  • format: "text" | "json" (optional, default: "text") - Output format.

get-face-details

Gets detailed information about a specific face detected in an image analysis session.

Parameters:

  • sessionUuid: string - Session UUID from a previous analysis.
  • faceIndex: number - Index of the face to get details for (starting from 0).
  • format: "text" | "json" (optional, default: "text") - Output format.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选