Prospectio MCP API
A FastAPI-based application that implements the Model Context Protocol for lead prospecting, allowing users to retrieve business leads from different data sources like Mantiks through a clean architecture.
README
Prospectio MCP API
A FastAPI-based application that implements the Model Context Protocol (MCP) for lead prospecting. The project follows Clean Architecture principles with a clear separation of concerns across domain, application, and infrastructure layers.
🏗️ Project Architecture
This project implements Clean Architecture (also known as Hexagonal Architecture) with the following layers:
- Domain Layer: Core business entities and logic
- Application Layer: Use cases, ports (interfaces), and strategies
- Infrastructure Layer: External services, APIs, and framework implementations
📁 Project Structure
prospectio-api-mcp/
├── pyproject.toml # Poetry project configuration
├── poetry.lock # Poetry lock file
├── README.md # This file
└── src/
├── main.py # FastAPI application entry point
├── config.py # Application configuration settings
├── domain/ # Domain layer (business entities)
│ ├── entities/
│ │ └── leads.py # Lead, Company, and Contact entities
│ └── logic/ # Domain business logic (empty)
├── application/ # Application layer (use cases & ports)
│ ├── ports/ # Abstract interfaces (ports)
│ │ └── leads/
│ │ └── get_leads.py # ProspectAPIPort interface
│ ├── strategies/ # Strategy pattern implementations
│ │ └── leads/
│ │ ├── strategy.py # Abstract strategy base class
│ │ └── mantiks.py # Mantiks-specific strategy
│ └── use_cases/ # Application use cases
│ └── leads/
│ └── get_leads.py # GetLeadsContactsUseCase
└── infrastructure/ # Infrastructure layer (external concerns)
├── api/ # HTTP API routes
│ └── prospect_routes.py # FastAPI routes & MCP tools
└── services/ # External service adapters
└── mantiks.py # Mantiks API implementation
🔧 Core Components
Domain Layer (src/domain/)
Entities (src/domain/entities/leads.py)
Contact: Represents a business contact with name, email, and phoneCompany: Represents a company with name, industry, size, and locationLeads: Aggregates companies and contacts for lead data
Application Layer (src/application/)
Ports (src/application/ports/leads/get_leads.py)
ProspectAPIPort: Abstract interface defining the contract for prospect data sourcesfetch_leads(): Abstract method for fetching lead data
Use Cases (src/application/use_cases/leads/get_leads.py)
GetLeadsContactsUseCase: Orchestrates the process of getting leads from different sources- Accepts a source identifier and a port implementation
- Uses strategy pattern to delegate to appropriate strategy based on source
Strategies (src/application/strategies/leads/)
GetLeadsStrategy: Abstract base class for lead retrieval strategiesMantiksStrategy: Concrete implementation for Mantiks data source- Delegates to the injected port to fetch leads
Infrastructure Layer (src/infrastructure/)
API Routes (src/infrastructure/api/prospect_routes.py)
- FastAPI Router: RESTful API endpoints
- MCP Integration: Model Context Protocol tools registration
get_leads(source: str): Endpoint that accepts a source parameter and returns lead data- Maps source to appropriate service implementation
- Handles error cases with proper HTTP status codes
Services (src/infrastructure/services/mantiks.py)
MantiksAPI: Concrete implementation ofProspectAPIPort- Currently returns mock data for development/testing
- Can be extended to integrate with actual Mantiks API
🚀 Application Entry Point (src/main.py)
The FastAPI application is configured with:
- Lifespan Management: Properly manages MCP session lifecycle
- Dual Protocol Support:
- REST API at
/rest/v1/ - MCP protocol at
/prospectio/
- REST API at
- Router Integration: Includes prospect routes for lead management
⚙️ Configuration (src/config.py)
Environment-based configuration using Pydantic Settings:
Config: General application settings (MASTER_KEY, ALLOWED_ORIGINS)MantiksConfig: Mantiks API-specific settings (API_BASE, API_KEY)- Environment Loading: Automatically finds and loads
.envfiles
📦 Dependencies (pyproject.toml)
Core Dependencies
- FastAPI (0.115.14): Modern web framework with automatic API documentation
- MCP (1.10.1): Model Context Protocol implementation
- Pydantic (2.10.3): Data validation and serialization
- HTTPX (0.28.1): HTTP client for external API calls
Development Dependencies
- Pytest: Testing framework
🔄 Data Flow
- HTTP Request: Client makes request to
/rest/v1/leads/{source} - Route Handler:
get_leads()function receives source parameter - Service Mapping: Source is mapped to appropriate service (e.g., MantiksAPI)
- Use Case Execution:
GetLeadsContactsUseCaseis instantiated with source and service - Strategy Selection: Use case selects appropriate strategy based on source
- Port Execution: Strategy calls the port's
fetch_leads()method - Data Return: Lead data is returned through the layers back to client
🎯 Design Patterns
1. Clean Architecture
- Clear separation of concerns
- Dependency inversion (infrastructure depends on application, not vice versa)
2. Strategy Pattern
- Different strategies for different lead sources
- Easy to add new lead sources without modifying existing code
3. Port-Adapter Pattern (Hexagonal Architecture)
- Ports define interfaces for external dependencies
- Adapters implement these interfaces for specific technologies
4. Dependency Injection
- Services are injected into use cases
- Promotes testability and flexibility
🔧 Extensibility
Adding New Lead Sources
- Create new service class implementing
ProspectAPIPortininfrastructure/services/ - Add new strategy class extending
GetLeadsStrategyinapplication/strategies/leads/ - Register the new strategy in
GetLeadsContactsUseCase.strategiesdictionary - Add service mapping in
prospect_routes.py
Adding New Endpoints
- Add new routes in
infrastructure/api/directory - Create corresponding use cases in
application/use_cases/ - Define new ports if external integrations are needed
🏃♂️ Running the Application
-
Install Dependencies:
poetry install -
Set Environment Variables: Create a
.envfile with required configuration -
Run the Application:
poetry run uvicorn src.main:app --reload -
Access APIs:
- REST API:
http://localhost:8000/rest/v1/leads/mantiks - API Documentation:
http://localhost:8000/docs - MCP Endpoint:
http://localhost:8000/prospectio/mcp/sse
- REST API:
🧪 Testing
The project structure supports easy testing:
- Unit Tests: Test individual components in isolation
- Integration Tests: Test the interaction between layers
- Mock Services: Use mock implementations for external dependencies
📝 License
Apache 2.0 License
👥 Author
Yohan Goncalves yohan.goncalves.pro@gmail.com
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。