PT-MCP (Paul Test Man Context Protocol)

PT-MCP (Paul Test Man Context Protocol)

Provides comprehensive codebase analysis and semantic understanding through integrated knowledge graphs, enabling AI assistants to understand project structure, patterns, dependencies, and context through multiple analysis tools and format generators.

Category
访问服务器

README

PT-MCP (Paul Test Man Context Protocol)

"Where am I now?"

Named after Paul Marcarelli, the Verizon "Test Man" who famously traversed America asking "Can you hear me now?", PT-MCP asks the essential question for AI coding assistants: "Where am I now?" - providing comprehensive context understanding through integrated knowledge graphs and semantic schemas.

The Paul Test Man Story

Just as Paul Test Man mapped Verizon's network coverage across America to ensure clear communication, PT-MCP maps your codebase's semantic landscape to ensure clear understanding. The server doesn't just return code structure - it returns meaning through:

  • YAGO 4.5 Knowledge Graphs: Base knowledge graph segments relevant to your context
  • Schema.org Domain Graphs: Domain-specific semantic understanding
  • Codebase Analysis: Comprehensive structure, patterns, and relationships

Overview

PT-MCP helps AI coding assistants understand your codebase by providing:

  • Comprehensive codebase analysis - File structure, language distribution, code metrics
  • Context file generation - Multiple format support (.cursorrules, SPEC.md, etc.)
  • Incremental updates - Efficient context regeneration based on changes
  • Pattern extraction - Identify architectural and coding patterns
  • Dependency analysis - Map internal and external dependencies
  • API surface extraction - Document public interfaces
  • Context validation - Ensure accuracy and completeness

Installation

npm install
npm run build

Usage

As an MCP Server

Add to your Claude Code configuration (~/.config/claude/config.json):

{
  "mcpServers": {
    "context-manager": {
      "command": "node",
      "args": ["/path/to/context-manager-mcp/dist/index.js"],
      "env": {}
    }
  }
}

Available Tools

1. analyze_codebase

Perform comprehensive codebase analysis including structure, dependencies, and metrics.

{
  path: string;              // Root directory path
  languages?: string[];      // Languages to analyze (auto-detect if omitted)
  depth?: number;            // Analysis depth (1-5, default: 3)
  include_patterns?: string[]; // Glob patterns to include
  exclude_patterns?: string[]; // Glob patterns to exclude
  analysis_type?: 'quick' | 'standard' | 'deep'; // Default: 'standard'
}

Example:

{
  "path": "/path/to/project",
  "analysis_type": "standard",
  "exclude_patterns": ["**/node_modules/**", "**/.git/**"]
}

Returns:

  • Total files, lines, and size
  • Language distribution with percentages
  • Directory structure and depth
  • Entry points identification
  • Package information (if available)

2. generate_context

Generate context files in specified format.

{
  path: string;
  format: 'cursorrules' | 'cursor_dir' | 'spec_md' | 'agents_md' | 'custom';
  output_path?: string;
  analysis_result?: any;
  options?: Record<string, any>;
}

Note: Implementation pending (stub currently returns placeholder)

3. update_context

Incrementally update existing context files based on code changes.

{
  path: string;
  changed_files: string[];
  context_format: string;
  force_full_regeneration?: boolean;
}

Note: Implementation pending (stub currently returns placeholder)

4. extract_patterns

Identify and extract architectural and coding patterns.

{
  path: string;
  pattern_types?: string[];
  min_occurrences?: number;
}

Note: Implementation pending (stub currently returns placeholder)

5. analyze_dependencies

Analyze and map internal and external dependencies.

{
  path: string;
  include_external?: boolean;
  include_internal?: boolean;
  max_depth?: number;
}

Note: Implementation pending (stub currently returns placeholder)

6. watch_project

Start monitoring project for changes and auto-update context.

{
  path: string;
  context_formats: string[];
  debounce_ms?: number;
  watch_patterns?: string[];
}

Note: Implementation pending (stub currently returns placeholder)

7. extract_api_surface

Extract and document public API surface.

{
  path: string;
  include_private?: boolean;
  output_format?: 'markdown' | 'json' | 'typescript';
}

Note: Implementation pending (stub currently returns placeholder)

8. validate_context

Validate accuracy and completeness of generated context files.

{
  path: string;
  context_path: string;
  checks?: string[];
}

Note: Implementation pending (stub currently returns placeholder)

Available Resources

context://project/{path}

Current project context including structure, patterns, and dependencies.

context://patterns/{path}

Architectural and coding patterns detected in the codebase.

context://dependencies/{path}

Internal and external dependency relationships.

Development Status

Phase 1: Foundation (✅ Complete)

  • [x] MCP server boilerplate with stdio transport
  • [x] Project structure and dependencies
  • [x] analyze_codebase tool - fully functional
  • [x] Stub implementations for remaining tools

Phase 2: Core Analysis (🚧 In Progress)

  • [ ] Implement generate_context tool
  • [ ] Implement extract_patterns tool
  • [ ] Implement analyze_dependencies tool
  • [ ] Add tree-sitter integration for deep code analysis

Phase 3: Advanced Features (📋 Planned)

  • [ ] Implement update_context tool with incremental updates
  • [ ] Implement watch_project tool with file system monitoring
  • [ ] Implement extract_api_surface tool
  • [ ] Implement validate_context tool

Architecture

context-manager-mcp/
├── src/
│   ├── index.ts              # MCP server entry point
│   ├── tools/                # Tool implementations
│   │   ├── index.ts          # Tool registration
│   │   ├── analyze-codebase.ts
│   │   ├── generate-context.ts
│   │   ├── update-context.ts
│   │   ├── extract-patterns.ts
│   │   ├── analyze-dependencies.ts
│   │   ├── watch-project.ts
│   │   ├── extract-api-surface.ts
│   │   └── validate-context.ts
│   ├── resources/            # Resource handlers
│   │   └── index.ts
│   ├── analyzers/            # Code analysis engines (future)
│   ├── generators/           # Context generators (future)
│   ├── utils/                # Utility functions (future)
│   └── types/                # TypeScript type definitions (future)
├── dist/                     # Compiled JavaScript
├── package.json
├── tsconfig.json
└── README.md

Testing

Test the MCP server locally:

# Build the project
npm run build

# Test analyze_codebase tool
echo '{"jsonrpc":"2.0","id":1,"method":"tools/call","params":{"name":"analyze_codebase","arguments":{"path":"/path/to/project","analysis_type":"standard"}}}' | node dist/index.js

Contributing

This is a work in progress. See the specification document for the full implementation roadmap.

Next Steps

  1. Implement context file generators for different formats
  2. Add tree-sitter integration for deeper code analysis
  3. Implement pattern extraction algorithms
  4. Add file system watching and incremental updates
  5. Create comprehensive test suite

License

MIT

Related Projects

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选