PubMed MCP Server
Enables searching and retrieving detailed information from PubMed articles using the NCBI Entrez API. Supports configurable search parameters including title/abstract filtering and keyword expansion to find relevant scientific publications.
README
PubMed-MCP
A Model Context Protocol (MCP) server that provides tools for searching PubMed articles using the NCBI Entrez API.
Author: Emilio Delgado Muñoz
Features
- Search PubMed for articles based on queries
- Retrieve detailed information including title, authors, abstract, journal, and publication date
- Returns results in JSON format
- Configurable maximum number of results
Architecture
graph TB
A[Usuario] --> B[MCP Server<br/>pubmed_search.py]
B --> C[Función search_pubmed]
C --> D[Entrez.esearch<br/>Búsqueda en PubMed]
D --> E[Base de datos PubMed<br/>NCBI]
E --> F[Lista de PMIDs]
F --> G[Entrez.efetch<br/>Obtener detalles]
G --> E
G --> H[Registros XML<br/>de artículos]
H --> I[Procesamiento de datos]
I --> J[Extracción de:<br/>- Título<br/>- Autores<br/>- Abstract<br/>- Journal<br/>- Fecha]
J --> K[Lista de artículos<br/>en formato JSON]
K --> L[Respuesta al usuario]
subgraph "Dependencias"
M[BioPython<br/>requirements.txt]
N[FastMCP<br/>requirements.txt]
end
B -.-> M
B -.-> N
subgraph "Configuración"
O[Entrez.email<br/>Configurado en código]
end
C -.-> O
style A fill:#e1f5fe
style L fill:#c8e6c9
style E fill:#fff3e0
Installation
-
Clone this repository:
git clone <repository-url> cd PubMed-MCP -
Install dependencies:
uv sync -
Configure your email in
pubmed_search.py:Entrez.email = 'your-email@example.com' # Replace with your actual email
VS Code Configuration
To use this MCP server locally in VS Code, the project includes a pre-configured .vscode/mcp.json file. This file tells VS Code how to run the MCP server.
The configuration is already set up to use uv for running the server:
{
"servers": {
"pubmed-mcp": {
"command": "uv",
"args": ["run", "${workspaceFolder}/pubmed_search.py"]
}
}
}
Requirements for VS Code Integration
- VS Code with MCP extension support
uvpackage manager installed- Python virtual environment set up
Alternative Configuration
If you prefer to use pip instead of uv, you can modify the .vscode/mcp.json file:
{
"servers": {
"pubmed-mcp": {
"command": "python",
"args": ["${workspaceFolder}/pubmed_search.py"]
}
}
}
Make sure your virtual environment is activated when using this configuration.
Requirements
- Python 3.11+
- BioPython
- FastMCP
Usage
Run the MCP server:
python pubmed_search.py
The server will start and listen for MCP protocol messages on stdin/stdout.
Available Tools
search_pubmed
Searches PubMed for articles matching the given query.
Parameters:
query(string): The search querymax_results(integer, optional): Maximum number of results to return (default: 10)title(bool, optional): If true (default) search in Title fieldabstract(bool, optional): If true (default) search in Abstract fieldkeywords(bool, optional): If true (default) expand search with Author Keywords ([ot]) and MeSH Headings ([mh])
Field logic:
title=Trueandabstract=True-> query applied as(your terms)[tiab]- Only
title=True->(your terms)[ti] - Only
abstract=True->(your terms)[ab] - Both false -> no field tag (all fields)
keywords=True-> OR-expanded with(your terms)[ot] OR (your terms)[mh]
Example refined queries:
query = "breast cancer metastasis"
title=True, abstract=True, keywords=True -> (breast cancer metastasis)[tiab] OR ((breast cancer metastasis)[ot] OR (breast cancer metastasis)[mh])
title=True, abstract=False, keywords=False -> (breast cancer metastasis)[ti]
title=False, abstract=False, keywords=True -> (breast cancer metastasis) OR ((breast cancer metastasis)[ot] OR (breast cancer metastasis)[mh])
Returns: A list of article objects containing:
pmid: PubMed IDtitle: Article titleauthors: List of author namesabstract: Article abstractjournal: Journal namepublication_year: Year of publicationpublication_month: Month of publicationurl: PubMed URL
Configuration
Before using the tool, you must set your email address in the Entrez.email variable. This is required by NCBI's Entrez API.
License
This project is open source. Please check the license file for details.
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。