PubMed MCP Server

PubMed MCP Server

Enables searching and retrieving detailed information from PubMed articles using the NCBI Entrez API. Supports configurable search parameters including title/abstract filtering and keyword expansion to find relevant scientific publications.

Category
访问服务器

README

PubMed-MCP

A Model Context Protocol (MCP) server that provides tools for searching PubMed articles using the NCBI Entrez API.

Author: Emilio Delgado Muñoz

Features

  • Search PubMed for articles based on queries
  • Retrieve detailed information including title, authors, abstract, journal, and publication date
  • Returns results in JSON format
  • Configurable maximum number of results

Architecture

graph TB
    A[Usuario] --> B[MCP Server<br/>pubmed_search.py]
    B --> C[Función search_pubmed]
    C --> D[Entrez.esearch<br/>Búsqueda en PubMed]
    D --> E[Base de datos PubMed<br/>NCBI]
    E --> F[Lista de PMIDs]
    F --> G[Entrez.efetch<br/>Obtener detalles]
    G --> E
    G --> H[Registros XML<br/>de artículos]
    H --> I[Procesamiento de datos]
    I --> J[Extracción de:<br/>- Título<br/>- Autores<br/>- Abstract<br/>- Journal<br/>- Fecha]
    J --> K[Lista de artículos<br/>en formato JSON]
    K --> L[Respuesta al usuario]

    subgraph "Dependencias"
        M[BioPython<br/>requirements.txt]
        N[FastMCP<br/>requirements.txt]
    end

    B -.-> M
    B -.-> N

    subgraph "Configuración"
        O[Entrez.email<br/>Configurado en código]
    end

    C -.-> O

    style A fill:#e1f5fe
    style L fill:#c8e6c9
    style E fill:#fff3e0

Installation

  1. Clone this repository:

    git clone <repository-url>
    cd PubMed-MCP
    
  2. Install dependencies:

    uv sync
    
  3. Configure your email in pubmed_search.py:

    Entrez.email = 'your-email@example.com'  # Replace with your actual email
    

VS Code Configuration

To use this MCP server locally in VS Code, the project includes a pre-configured .vscode/mcp.json file. This file tells VS Code how to run the MCP server.

The configuration is already set up to use uv for running the server:

{
  "servers": {
    "pubmed-mcp": {
      "command": "uv",
      "args": ["run", "${workspaceFolder}/pubmed_search.py"]
    }
  }
}

Requirements for VS Code Integration

  • VS Code with MCP extension support
  • uv package manager installed
  • Python virtual environment set up

Alternative Configuration

If you prefer to use pip instead of uv, you can modify the .vscode/mcp.json file:

{
  "servers": {
    "pubmed-mcp": {
      "command": "python",
      "args": ["${workspaceFolder}/pubmed_search.py"]
    }
  }
}

Make sure your virtual environment is activated when using this configuration.

Requirements

  • Python 3.11+
  • BioPython
  • FastMCP

Usage

Run the MCP server:

python pubmed_search.py

The server will start and listen for MCP protocol messages on stdin/stdout.

Available Tools

search_pubmed

Searches PubMed for articles matching the given query.

Parameters:

  • query (string): The search query
  • max_results (integer, optional): Maximum number of results to return (default: 10)
  • title (bool, optional): If true (default) search in Title field
  • abstract (bool, optional): If true (default) search in Abstract field
  • keywords (bool, optional): If true (default) expand search with Author Keywords ([ot]) and MeSH Headings ([mh])

Field logic:

  • title=True and abstract=True -> query applied as (your terms)[tiab]
  • Only title=True -> (your terms)[ti]
  • Only abstract=True -> (your terms)[ab]
  • Both false -> no field tag (all fields)
  • keywords=True -> OR-expanded with (your terms)[ot] OR (your terms)[mh]

Example refined queries:

query = "breast cancer metastasis"
title=True, abstract=True, keywords=True -> (breast cancer metastasis)[tiab] OR ((breast cancer metastasis)[ot] OR (breast cancer metastasis)[mh])
title=True, abstract=False, keywords=False -> (breast cancer metastasis)[ti]
title=False, abstract=False, keywords=True -> (breast cancer metastasis) OR ((breast cancer metastasis)[ot] OR (breast cancer metastasis)[mh])

Returns: A list of article objects containing:

  • pmid: PubMed ID
  • title: Article title
  • authors: List of author names
  • abstract: Article abstract
  • journal: Journal name
  • publication_year: Year of publication
  • publication_month: Month of publication
  • url: PubMed URL

Configuration

Before using the tool, you must set your email address in the Entrez.email variable. This is required by NCBI's Entrez API.

License

This project is open source. Please check the license file for details.

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选