PubMed MCP Server

PubMed MCP Server

A comprehensive Model Context Protocol server that enables advanced PubMed literature search, citation formatting, and research analysis through natural language interactions.

Category
访问服务器

README

PubMed MCP Server

CI

A comprehensive Model Context Protocol (MCP) server for PubMed literature search and management. This server provides advanced search capabilities, citation formatting, and research analysis tools through the MCP protocol.

Features

  • Advanced PubMed Search: Search with complex filters including date ranges, article types, authors, journals, and MeSH terms
  • Article Details: Retrieve detailed information for specific PMIDs including abstracts, authors, and metadata
  • Citation Export: Export citations in multiple formats (BibTeX, APA, MLA, Chicago, Vancouver, EndNote, RIS)
  • Author Search: Find articles by specific authors with co-author information
  • Related Articles: Discover articles related to a specific PMID
  • MeSH Term Search: Search and explore Medical Subject Headings
  • Journal Analysis: Get metrics and recent articles from specific journals
  • Research Trends: Analyze publication trends over time
  • Article Comparison: Compare multiple articles side by side
  • Caching: Built-in caching for improved performance
  • Rate Limiting: Respectful API usage with configurable rate limits

Installation

Prerequisites

  • Python 3.8 or higher
  • NCBI API key (free registration required)
  • Valid email address for NCBI API identification

Quick Start

  1. Clone the repository:

    git clone https://github.com/your-org/pubmed-mcp.git
    cd pubmed-mcp
    
  2. Install dependencies:

    pip install -r requirements.txt
    
  3. Set up environment variables:

    cp env.example .env
    # Edit .env with your NCBI API key and email
    
  4. Run the server:

    python -m src.main
    

Development Installation

For development with additional tools:

make install-dev

Or manually:

pip install -r requirements.txt
pip install -e .
pip install black isort mypy flake8

Configuration

Create a .env file in the project root with the following variables:

# Required
PUBMED_API_KEY=your_ncbi_api_key_here
PUBMED_EMAIL=your.email@example.com

# Optional
CACHE_TTL=300
CACHE_MAX_SIZE=1000
RATE_LIMIT=3.0
LOG_LEVEL=info

Getting an NCBI API Key

  1. Visit NCBI Account Settings
  2. Sign in or create an account
  3. Navigate to "API Key Management"
  4. Create a new API key
  5. Copy the key to your .env file

Usage

Available Tools

The server provides the following MCP tools:

1. search_pubmed

Search PubMed with advanced filtering options.

{
  "query": "machine learning healthcare",
  "max_results": 20,
  "date_range": "5y",
  "article_types": ["Journal Article", "Review"],
  "has_abstract": true
}

2. get_article_details

Get detailed information for specific PMIDs.

{
  "pmids": ["12345678", "87654321"],
  "include_abstracts": true,
  "include_citations": false
}

3. search_by_author

Search for articles by a specific author.

{
  "author_name": "Smith J",
  "max_results": 10,
  "include_coauthors": true
}

4. export_citations

Export citations in various formats.

{
  "pmids": ["12345678"],
  "format": "bibtex",
  "include_abstracts": false
}

5. find_related_articles

Find articles related to a specific PMID.

{
  "pmid": "12345678",
  "max_results": 10
}

6. search_mesh_terms

Search using MeSH terms.

{
  "term": "Machine Learning",
  "max_results": 20
}

7. analyze_research_trends

Analyze publication trends over time.

{
  "topic": "artificial intelligence",
  "years_back": 5,
  "include_subtopics": false
}

Example Usage with MCP Client

import asyncio
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client

async def main():
    server_params = StdioServerParameters(
        command="python",
        args=["-m", "src.main"]
    )

    async with stdio_client(server_params) as (read, write):
        async with ClientSession(read, write) as session:
            # Initialize the session
            await session.initialize()

            # Search PubMed
            result = await session.call_tool(
                "search_pubmed",
                {
                    "query": "COVID-19 vaccines",
                    "max_results": 5,
                    "date_range": "1y"
                }
            )

            print(result.content[0].text)

if __name__ == "__main__":
    asyncio.run(main())

Development

Running Tests

# Run all tests
make test

# Run with coverage
make test-coverage

# Run specific test types
python run_tests.py unit
python run_tests.py integration
python run_tests.py coverage

Code Quality

# Format code
make format

# Run linting
make lint

# Type checking
mypy src/

Project Structure

pubmed-mcp/
├── src/
│   ├── __init__.py
│   ├── main.py              # Entry point
│   ├── server.py            # MCP server implementation
│   ├── models.py            # Pydantic models
│   ├── pubmed_client.py     # PubMed API client
│   ├── tool_handler.py      # Tool request handlers
│   ├── citation_formatter.py # Citation formatting
│   ├── tools.py             # Tool definitions
│   └── utils.py             # Utility functions
├── tests/                   # Test suite
├── requirements.txt         # Dependencies
├── setup.py                 # Package setup
├── pyproject.toml          # Modern Python config
├── Makefile                # Development commands
├── Dockerfile              # Container setup
└── README.md               # This file

Docker

Build and Run

# Build Docker image
make docker-build

# Run with environment variables
make docker-run PUBMED_API_KEY=your_key PUBMED_EMAIL=your_email

Docker Compose

version: '3.8'
services:
  pubmed-mcp:
    build: .
    environment:
      - PUBMED_API_KEY=your_key
      - PUBMED_EMAIL=your_email
      - LOG_LEVEL=info
    volumes:
      - ./data:/app/data

API Reference

Search Parameters

  • query: Search query using PubMed syntax
  • max_results: Maximum number of results (1-200)
  • sort_order: Sort order (relevance, pub_date, author, journal, title)
  • date_from/date_to: Date range filters
  • date_range: Predefined ranges (1y, 5y, 10y, all)
  • article_types: Filter by publication types
  • authors: Filter by author names
  • journals: Filter by journal names
  • mesh_terms: Filter by MeSH terms
  • language: Language filter (e.g., 'eng', 'fre')
  • has_abstract: Only articles with abstracts
  • has_full_text: Only articles with full text
  • humans_only: Only human studies

Citation Formats

  • bibtex: BibTeX format
  • apa: APA style
  • mla: MLA style
  • chicago: Chicago style
  • vancouver: Vancouver style
  • endnote: EndNote format
  • ris: RIS format

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests for new functionality
  5. Run the test suite
  6. Submit a pull request

Development Guidelines

  • Follow PEP 8 style guidelines
  • Add type hints to all functions
  • Write comprehensive tests
  • Update documentation for new features
  • Use conventional commit messages

License

This project is licensed under the MIT License - see the LICENSE file for details.

Support

Acknowledgments

Changelog

See CHANGELOG.md for a detailed history of changes.


Note: This server requires a valid NCBI API key and follows NCBI's usage guidelines. Please be respectful of API rate limits and terms of service.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选