PyAirbyte MCP Server

PyAirbyte MCP Server

Generates complete PyAirbyte data pipeline code and setup instructions for moving data between 600+ Airbyte source and destination connectors or to Pandas DataFrames, using AI-powered context-aware guidance based on connector documentation.

Category
访问服务器

README

PyAirbyte MCP Server

What is the PyAirbyte MCP Service?

The PyAirbyte Managed Code Provider (MCP) service is an AI-powered backend that generates PyAirbyte pipeline code and instructions. It leverages OpenAI and connector documentation to help users quickly scaffold and configure data pipelines between sources and destinations supported by Airbyte. The MCP service automates code generation, provides context-aware guidance, and streamlines the process of building and deploying data pipelines. If you want to learn more on how the service works check out this video.

  • Generates PyAirbyte pipeline code based on user instructions and connector documentation.
  • Uses OpenAI and file search to provide context-aware code and instructions.
  • Available as a remote MCP server for Cursor.

Quick Start

For Cursor

The easiest way to get started is using our hosted MCP server. Add this to your Cursor MCP configuration file (.cursor/mcp.json):

{
  "mcpServers": {
    "pyairbyte-mcp": {
      "url": "https://pyairbyte-mcp-7b7b8566f2ce.herokuapp.com/mcp",
      "env": {
        "OPENAI_API_KEY": "your-openai-api-key-here"
      }
    }
  }
}

Requirements:

  • Your own OpenAI API key
  • No local installation required
  • Works immediately after configuration

Configuration Steps:

  1. Get your OpenAI API key from OpenAI Platform
  2. Create or edit .cursor/mcp.json in your project directory (for project-specific) or ~/.cursor/mcp.json (for global access)
  3. Add the configuration above with your actual OpenAI API key
  4. turn off / on the MCP server
  5. Start generating PyAirbyte pipelines!

Security Note

  • API keys are provided via MCP environment variables in the configuration
  • This ensures secure API key handling through the MCP protocol
  • Cursor is currently the only client that appears to support passing in ENV for remote servers. We will add Cline support as soon as available.

Usage

Once configured, you can use the MCP server in your AI assistant by asking it to generate PyAirbyte pipelines.

🚀 How to Use in Cline

1. Verify Connection

  • Look for the MCP server status in Cline's interface
  • You should see "pyairbyte-mcp" listed with 1 tool available
  • If it shows 0 tools or is red, check your mcp.json. If you need more help, please ask in this slack channel.

2. Generate Pipelines with Natural Language

Simply ask Cline to generate a PyAirbyte pipeline! Here are example prompts:

Basic Examples:

Generate a PyAirbyte pipeline from source-postgres to destination-snowflake
Create a pipeline to move data from source-github to dataframe
Build a PyAirbyte script for source-stripe to destination-bigquery
Generate a data pipeline from source-salesforce to destination-postgres
Create a pipeline that reads from source-github to a dataframe, and then visualize the results using Streamlit
Help me set up a data pipeline from source-salesforce to destination-postgres

4. Available Source/Destination Options

  • Sources: Any Airbyte source connector (e.g., source-postgres, source-github, source-stripe, source-mysql, source-salesforce)
  • Destinations: Any Airbyte destination connector (e.g., destination-snowflake, destination-bigquery, destination-postgres) OR dataframe for Pandas analysis

5. Pro Tips

  • Use "dataframe" as destination if you want to analyze data in Python/Pandas
  • Be specific about your source and destination names (use official Airbyte connector names and use source- or destination- to specify)
  • Ask follow-up questions if you need help with specific configuration or setup

The tool will automatically use your OpenAI API key (configured in the MCP settings) to generate enhanced, well-documented pipeline code with best practices and detailed setup instructions!

Just start by asking Cline to generate a pipeline for your specific use case! 🎯


Features

  • Automated Code Generation: Creates complete PyAirbyte pipeline scripts
  • Configuration Management: Handles environment variables and credentials securely
  • Documentation Integration: Uses OpenAI to provide context-aware instructions
  • Multiple Output Formats: Supports both destination connectors and DataFrame output
  • Best Practices: Includes error handling, logging, and proper project structure
  • Generate pipeline for over 600 connectors: If it is in the Airbyte Connector Registry, the MCP server can create it.

Available Tools

generate_pyairbyte_pipeline

Generates a complete PyAirbyte pipeline with setup instructions.

Parameters:

  • source_name: The official Airbyte source connector name (e.g., 'source-postgres', 'source-github')
  • destination_name: The official Airbyte destination connector name (e.g., 'destination-postgres', 'destination-snowflake') OR 'dataframe' to output to Pandas DataFrames

Returns:

  • Complete Python pipeline code
  • Setup and installation instructions
  • Environment variable templates
  • Best practices and usage guidelines

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选