Pydantic AI Documentation Server

Pydantic AI Documentation Server

Provides programmatic access to Pydantic-AI documentation as an MCP server, enabling retrieval of specific documents, listing of topics, and access to changelog information.

Category
访问服务器

README

Pydantic AI Documentation Server

Overview

This server provides programmatic access to the Pydantic-AI documentation, including cloning/updating the documentation repository, retrieving specific documents, listing documentation topics, and accessing changelog information. It operates as a Model Context Protocol (MCP) server, exposing its functionalities as tools.

Note: This is primarily for personal use and requires cloning the repository and using the update tool to keep the documentation up to date.

Features

The server exposes the following tools via MCP:

  • update_documentation(force_clone: bool = False): Clones the Pydantic-AI repository (if not already present) or pulls the latest updates. If force_clone is true, it will delete any existing repository and clone fresh.
  • get_document_by_path(path: str): Retrieves a specific documentation file by its path relative to the docs/ directory (e.g., usage/models.md).
  • list_topics(path: Optional[str] = None): Lists files and directories within the Pydantic-AI docs/ directory. If a path is provided, it lists contents of that subdirectory.
  • list_available_changelogs(): Lists all available changelog files found in the Pydantic-AI repository (typically under docs/history/).
  • get_changelog_content(path: str): Retrieves the content of a specific changelog file (e.g., history/0.2.0.md).

Setup

  1. Clone this repository:

    git clone <repository_url> # Replace <repository_url> with the actual URL of this server's repository
    cd pydantic-ai-docs-server
    
  2. Create and activate a Python virtual environment: It's recommended to use Python 3.12 or newer. Using python -m venv:

    python -m venv .venv
    source .venv/bin/activate  # On Windows use: .venv\Scripts\activate
    

    Alternatively, using uv:

    uv venv .venv
    source .venv/bin/activate  # On Windows use: .venv\Scripts\activate
    
  3. Install dependencies: This project uses uv for fast package management, but pip can also be used.

    uv pip install -e .
    # Or, if you don't have uv:
    # pip install -e .
    

    This installs the package in editable mode along with its dependencies specified in pyproject.toml.

Running the Server

Once the setup is complete, you can run the server using the script installed by pip install -e ., or by running the module directly:

pydantic-ai-docs-server

Or:

python -m pydantic_ai_docs_server

The server will start and listen for MCP requests over standard input/output (stdio).

Using the Server

This application is an MCP server designed to communicate over standard input/output (stdio) using newline-delimited JSON messages. To interact with it, you would typically use an MCP client library or tool that can manage this communication channel. However, you can also interact with it directly by sending and receiving the raw JSON messages if you are developing a client or for testing purposes.

Interaction Protocol:

  1. You send a JSON request object on a single line to the server's stdin.
  2. The server processes the request and sends a JSON response object on a single line to its stdout.

Common MCP Request Types:

  1. Listing Available Tools (list-tools)

    To ask the server what tools it provides, send a JSON message like this:

    {"type": "list-tools"}
    

    The server will respond with a JSON object containing a list of available tools and their schemas.

  2. Calling a Tool (call-tool)

    To execute a specific tool, send a JSON message like this:

    {"type": "call-tool", "tool_name": "<tool_name_here>", "tool_args": {"<arg_name>": "<value>", ...}}
    

    Example: Calling update_documentation

    {"type": "call-tool", "tool_name": "update_documentation", "tool_args": {"force_clone": false}}
    

    Example: Calling get_document_by_path

    {"type": "call-tool", "tool_name": "get_document_by_path", "tool_args": {"path": "usage/models.md"}}
    

    Example: Calling list_topics (no arguments)

    {"type": "call-tool", "tool_name": "list_topics", "tool_args": {}}
    

    The server will respond with a JSON object containing the result of the tool execution or an error if something went wrong.

Refer to the Model Context Protocol specification for more details on the message formats and protocol. The tools available on this server are defined in pydantic_ai_docs_server/server.py.

Integration with MCP Clients (e.g., Cursor)

To use this server with an MCP client application like Cursor, you need to configure it in the client's MCP settings file. For Cursor, this is typically a file named .cursor/mcp.json located in your project root.

.cursor/mcp.json Configuration:

Add or update the mcpServers section in your .cursor/mcp.json as follows. This configuration uses uv to run the server module from the specified project directory.

{
  "mcpServers": {
      "pydantic-ai-docs": {
      "command": "uv",
      "args": [
        "--directory",
        "/path/to/your/pydantic-ai-docs-server",
        "run",
        "-m",
        "pydantic_ai_docs_server"
      ]
    }
  }
}

Key points for this configuration:

  • "pydantic-ai-docs": This is a name you assign to this server configuration. Your MCP client (e.g., Cursor) will use this name to identify and communicate with this server.
  • "command": "uv": Specifies that uv should be used to launch the server.
  • "args": Defines the arguments passed to uv:
    • "--directory": Instructs uv to operate as if it were launched from the specified directory. Replace /path/to/your/pydantic-ai-docs-server with the actual absolute path to the root of this pydantic-ai_docs_server project on your system. This is critical for the server to correctly locate its internal modules and the cloned documentation repository.
    • "run": The uv command to execute a project.
    • "-m", "pydantic_ai_docs_server": Tells uv run to execute the pydantic_ai_docs_server package as a module (which runs its __main__.py file).

Ensure your virtual environment (created with uv venv or python -m venv) is active, or that uv is installed globally and can find the project's environment when the MCP client starts the server.

Once configured, your MCP client should be able to discover and call the tools provided by this server (e.g., PyDanticAIDocs.update_documentation).

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选