Pyke MCP Server
An MCP server for the Pyke logic programming engine that enables LLMs to perform logical reasoning using knowledge bases with facts, rules, and queries. It supports session management, forward chaining inference, and bulk loading of programs in Logic-LLM format.
README
Pyke MCP Server
An MCP (Model Context Protocol) server for the Pyke logic programming inference engine. This server enables LLMs to perform logical reasoning through knowledge bases with facts, rules, and queries.
Features
- Fact Management: Add ground truth facts to the knowledge base
- Rule Definition: Define inference rules using forward chaining
- Query Execution: Check if facts can be derived from the knowledge base
- Goal Proving: Find all variable bindings that satisfy a goal
- Session Management: Support multiple independent knowledge bases
- Logic-LLM Compatible: Load programs in Logic-LLM format
Installation
Using pip
pip install pyke-mcp
From source
git clone https://github.com/yourusername/pyke-mcp.git
cd pyke-mcp
pip install -e .
Dependencies
- Python 3.10+
mcp>=1.2.0pyke3>=1.1.1
Quick Start
Running the Server
# Using the installed command
pyke-mcp
# Or using Python
python -m pyke_mcp.server
Configuration for Claude Desktop
Add to your claude_desktop_config.json:
macOS/Linux:
{
"mcpServers": {
"pyke": {
"command": "pyke-mcp"
}
}
}
Windows:
{
"mcpServers": {
"pyke": {
"command": "pyke-mcp"
}
}
}
Or with explicit Python path:
{
"mcpServers": {
"pyke": {
"command": "python",
"args": ["-m", "pyke_mcp.server"]
}
}
}
Available Tools
add_fact
Add a fact to the knowledge base.
Predicate(arg1, arg2, ...)
Examples:
Human(Socrates, True)- Socrates is humanParent(John, Mary)- John is a parent of Mary
add_rule
Add an inference rule using forward chaining.
Premise >>> Conclusion
Premise1 && Premise2 >>> Conclusion
Examples:
Human($x, True) >>> Mortal($x, True)- All humans are mortalParent($x, $y) && Parent($y, $z) >>> Grandparent($x, $z)- Grandparent relationship
add_facts_and_rules
Bulk add multiple facts and rules at once.
query
Check if a specific fact can be derived.
Predicate(Subject, ExpectedValue)
Example:
Mortal(Socrates, True)- "Is Socrates mortal?"
prove_goal
Find all variable bindings that satisfy a goal.
Examples:
Mortal($who, True)- "Who is mortal?"Parent($parent, Mary)- "Who are Mary's parents?"
get_program
Display the current knowledge base contents.
clear_program
Clear all facts and rules from the session.
load_logic_program
Load a complete logic program from formatted text (Logic-LLM compatible).
list_sessions
List all active sessions.
delete_session
Delete a specific session.
Usage Examples
Classic Syllogism
# Add facts
add_fact("Human(Socrates, True)")
add_fact("Human(Plato, True)")
# Add rule
add_rule("Human($x, True) >>> Mortal($x, True)")
# Query
query("Mortal(Socrates, True)")
# Result: True, Match: True
# Find all mortals
prove_goal("Mortal($who, True)")
# Bindings: who=Socrates, who=Plato
Family Relationships
# Facts
add_fact("Parent(Alice, Bob)")
add_fact("Parent(Bob, Charlie)")
add_fact("Parent(Bob, Diana)")
# Rules
add_rule("Parent($x, $y) && Parent($y, $z) >>> Grandparent($x, $z)")
# Find Alice's grandchildren
prove_goal("Grandparent(Alice, $grandchild)")
# Bindings: grandchild=Charlie, grandchild=Diana
Loading a Complete Program
program = """
Predicates:
Human(x, bool)
Mortal(x, bool)
Facts:
Human(Socrates, True)
Human(Aristotle, True)
Rules:
Human($x, True) >>> Mortal($x, True)
Query:
Mortal(Socrates, True)
"""
load_logic_program(program)
Logic Program Format
The server accepts programs in the Logic-LLM format:
Predicates:
PredicateName(arg1_type, arg2_type, ...)
Facts:
PredicateName(value1, value2, ...)
Rules:
Premise($var, value) >>> Conclusion($var, value)
Premise1($x, val) && Premise2($x, val) >>> Conclusion($x, val)
Query:
PredicateName(subject, expected_value)
Syntax Rules
-
Facts: Ground assertions without variables
Human(Socrates, True)Age(John, 30)
-
Rules: Implications with variables (prefixed with
$)Human($x, True) >>> Mortal($x, True)- Multiple premises joined with
&&
-
Variables: Prefixed with
$$x,$person,$value
-
Values: Can be boolean (
True/False) or stringsTrue,False,Socrates,Blue
Session Management
The server supports multiple independent sessions:
# Create/use a session
add_fact("Human(Socrates, True)", session_id="philosophy")
# Use a different session
add_fact("Cat(Whiskers, True)", session_id="animals")
# List sessions
list_sessions()
# Delete a session
delete_session("philosophy")
Error Handling
The server provides clear error messages for:
- Invalid fact/rule syntax
- Query execution failures
- Missing Pyke installation
- Session not found
Based On
- Pyke Knowledge Engine
- Logic-LLM - Pyke solver implementation
- clingo-mcp - MCP server interface reference
License
MIT License
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。