pymcp-sse: Python MCP over SSE Library
Asynchronous Python library for building Model Context Protocol (MCP) servers and clients over HTTP/SSE, ideal for AI agents, tool integrations, and chatbot ecosystems.
rvirgilli
README
pymcp-sse: Python MCP over SSE Library
A lightweight, flexible implementation of the Model Context Protocol (MCP) for Python applications, specializing in robust HTTP/SSE transport.
Features
- Modular Framework: Clean implementation of
BaseMCPServer
,BaseMCPClient
, andMultiMCPClient
. - HTTP/SSE Transport: Robust HTTP/SSE implementation with automatic session management, configurable timeouts, and reconnection handling.
- Concurrent Task Execution:
BaseMCPServer.run_with_tasks()
method for easily running servers with persistent background asynchronous tasks. - Tool Registration & Discovery: Simple decorator-based tool registration (
@server.register_tool()
) and a standarddescribe_tools
endpoint for clients to dynamically query detailed tool capabilities (parameters, descriptions). - Server Push: Built-in support for server-initiated push notifications to clients and periodic keep-alive pings. Includes
NotificationScheduler
helper class. - LLM Integration: Includes
BaseLLMClient
abstraction for easy integration with various LLM providers (an Anthropic Claude example is provided). - Flexible Logging: Configurable logging via
pymcp_sse.utils
.
Installation
To install the library locally for development:
# Navigate to the directory containing pyproject.toml
cd /path/to/your/pymcp-sse
# Install in editable mode
pip install -e .
(Once published, installation via pip install pymcp-sse
will be available.)
Basic Usage
Creating an MCP Server (Simple)
from pymcp_sse.server import BaseMCPServer
from pymcp_sse.utils import configure_logging
configure_logging() # Configure logging (optional)
# Create a server instance
server = BaseMCPServer("My Simple Server")
# Register tools using the decorator
# Type hints are used by describe_tools
@server.register_tool("echo")
async def echo_tool(text: str) -> dict:
'''Echoes the provided text back.'''
return {"response": f"Echo: {text}"}
# Run the server using the standard method
if __name__ == "__main__":
# Additional kwargs are passed to uvicorn.run (e.g., timeout_keep_alive=65)
server.run(host="0.0.0.0", port=8000)
Creating an MCP Server (with Background Tasks)
import asyncio
from pymcp_sse.server import BaseMCPServer
from pymcp_sse.utils import configure_logging
configure_logging() # Configure logging (optional)
# Create a server instance
server = BaseMCPServer("My Background Task Server")
# Define your background task
async def my_periodic_task():
while True:
print("Task running...")
await asyncio.sleep(5)
# Define a shutdown callback
async def cleanup():
print("Cleaning up...")
# Run the server using run_with_tasks
async def main():
await server.run_with_tasks(
host="0.0.0.0",
port=8001,
concurrent_tasks=[my_periodic_task],
shutdown_callbacks=[cleanup]
)
if __name__ == "__main__":
asyncio.run(main())
Creating a Single Client
import asyncio
from pymcp_sse.client import BaseMCPClient
from pymcp_sse.utils import configure_logging
configure_logging() # Configure logging (optional)
async def main():
# Configure timeouts for stability (read timeout > server ping interval)
client = BaseMCPClient(
"http://localhost:8000", # Point to your server
http_read_timeout=65,
http_connect_timeout=10
)
try:
# Connect and initialize
if await client.connect() and await client.initialize():
print(f"Connected. Available tools: {client.available_tools}")
# Call a tool
result = await client.call_tool("echo", text="Hello, world!")
print(f"Tool Result: {result}")
# Assign a notification handler if needed
# client.notification_handler = your_async_handler
except Exception as e:
print(f"An error occurred: {e}")
finally:
await client.close()
if __name__ == "__main__":
asyncio.run(main())
Creating a Multi-Server Client
import asyncio
from pymcp_sse.client import MultiMCPClient
from pymcp_sse.utils import configure_logging
configure_logging() # Configure logging (optional)
async def main():
# Use servers from the examples section
servers = {
"server_basic": "http://localhost:8101",
"server_tasks": "http://localhost:8102"
}
# Configure timeouts for stability (read timeout > server ping interval)
client = MultiMCPClient(
servers,
http_read_timeout=65,
http_connect_timeout=10
)
try:
# Connect to all servers (automatically fetches tool details if describe_tools exists)
connection_results = await client.connect_all()
print(f"Connection Results: {connection_results}")
# Get info about connected servers (including tool details)
server_info = client.get_server_info()
print("\nServer Info:")
for name, info in server_info.items():
print(f"- {name}: Status={info['status']}, Tools={len(info.get('available_tools', []))}, Details Fetched={bool(info.get('tool_details'))}")
# Call a tool on a specific server
if server_info.get("server_basic", {}).get("status") == "connected":
result = await client.call_tool("server_basic", "echo", text="Hello from MultiClient!")
print(f"\nServer Basic Echo Result: {result}")
except Exception as e:
print(f"An error occurred: {e}")
finally:
await client.close()
if __name__ == "__main__":
asyncio.run(main())
Documentation
For more detailed usage instructions, notes on the HTTP/SSE implementation, guides on LLM integration, and the protocol specification, please refer to the documentation in the docs/
directory.
Examples
See the examples/
directory for complete working examples, including:
server_basic
: Demonstrates a simple server usingserver.run()
.server_tasks
: Demonstrates a server with background tasks (notification scheduler) usingserver.run_with_tasks()
.client
: A multi-server client usingMultiMCPClient
and anLLMAgent
to interact with both servers via natural language. Requires an API key (setANTHROPIC_API_KEY
in a.env
file in the project root).run_all.py
: A launcher script to easily startserver_basic
,server_tasks
, and theclient
simultaneously.notification_listener.py
: A simple standalone client for receiving push notifications from any compatible server.
License
MIT
推荐服务器
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
MCP Package Docs Server
促进大型语言模型高效访问和获取 Go、Python 和 NPM 包的结构化文档,通过多语言支持和性能优化来增强软件开发。
Claude Code MCP
一个实现了 Claude Code 作为模型上下文协议(Model Context Protocol, MCP)服务器的方案,它可以通过标准化的 MCP 接口来使用 Claude 的软件工程能力(代码生成、编辑、审查和文件操作)。
@kazuph/mcp-taskmanager
用于任务管理的模型上下文协议服务器。它允许 Claude Desktop(或任何 MCP 客户端)在基于队列的系统中管理和执行任务。
mermaid-mcp-server
一个模型上下文协议 (MCP) 服务器,用于将 Mermaid 图表转换为 PNG 图像。
Jira-Context-MCP
MCP 服务器向 AI 编码助手(如 Cursor)提供 Jira 工单信息。

Linear MCP Server
一个模型上下文协议(Model Context Protocol)服务器,它与 Linear 的问题跟踪系统集成,允许大型语言模型(LLM)通过自然语言交互来创建、更新、搜索和评论 Linear 问题。

Sequential Thinking MCP Server
这个服务器通过将复杂问题分解为顺序步骤来促进结构化的问题解决,支持修订,并通过完整的 MCP 集成来实现多条解决方案路径。
Curri MCP Server
通过管理文本笔记、提供笔记创建工具以及使用结构化提示生成摘要,从而实现与 Curri API 的交互。