PyMCP

PyMCP

A simple, tiny, and asynchronous server and client implementation for the Modern Context Protocol that allows you to easily expose functions as remote tools using a decorator with hot-reloading capability.

Category
访问服务器

README

PyMCP

PyMCP is a simple, tiny, and asynchronous server and client implementation for the Modern Context Protocol (MCP).

Features

  • Simple Tool Definition: Easily expose functions as remote tools using a simple @tool decorator.
  • Hot-Reloading: Tools can be added, removed, or modified on the fly, and the server will hot-reload them without a restart.

Quick Start

Running the Server

  1. Installation (from source):

    git clone <repository-url>
    cd pymcp
    pip install -r requirements.txt
    pip install -e .
    
  2. Run the Server:

    • run with default settings:
    pymcp
    
    • run with custom settings:
    pymcp --host 0.0.0.0 --port 9000 --tool-repo ./my_tools --log-level DEBUG
    

Using the Client

import asyncio
import pymcp

async def main():
    try:
        async with pymcp.Client("localhost", 8765) as client:
            # Ping the server
            pong = await client.call("ping")

            # Call the custom 'add' tool
            result = await client.call("add", a=5, b=7)
            print(f"5 + 7 = {result}")

            # Discover available tools
            tools = await client.call("list_tools_available")
            print("Available tools:", tools)

    except Exception as e:
        print(f"An error occurred: {e}")

if __name__ == "__main__":
    asyncio.run(main())

Configuration

  • Arguments passed to start_server().
  • Command-line arguments (e.g., --port).
  • Environment variables (e.g., PYMCP_PORT=9000).
  • Values in a .env file in your project's root.
  • Default values in the Settings class.

all configuration options:

# .env
# Server network settings
# PYMCP_HOST=<your_host_address>
PYMCP_HOST=127.0.0.1

# PYMCP_PORT=<your_port_number>
PYMCP_PORT=8765

# List of paths to user-defined tool directories.
# Paths should be separated by commas.
# absolute or relative paths
# Example: /path/to/my_tools,/another/path/for_tools
PYMCP_USER_TOOL_REPOS=./my_custom_tools,../shared_tools,/home/user/tools

# Logging level
# Valid values: DEBUG, INFO, WARNING, ERROR, CRITICAL
PYMCP_LOG_LEVEL=INFO

Server

request->response flow

client -> connection manager -> validator -> router -> tool executor -> return result -> client

create a tool

import pymcp

@pymcp.tool
def add(a: int, b: int) -> int:
    """
    Add two integer numbers.
    argument a: First integer number.
    argument b: Second integer number.

    return: The sum of the two numbers.

    """
    return a + b

@pymcp.tool
def retrieve_data() -> str:
    """
    Retrieve user data from source

    no arguments is needed
    """
    return data

Tool Repository discovery

The server discovers tools by scanning all .py files within the directories specified by the --tool-repo CLI argument or the PYMCP_TOOL_REPOS environment variable.

You can organize your tools into multiple files and directories. The loader will scan them recursively.

example directory structure:

my_tools/
├── __init__.py
├── math_tools.py
├── string_tools.py
└── data_tools/
    ├── __init__.py
    ├── user_data.py
    └── system_data.py
second_tools/
├── __init__.py
├── network_tools.py
└── file_tools.py

Hot-Reloading

The server watches the tool repositories for file changes. If you add, modify, or delete a Python file in a tool directory, the server will automatically perform a reload:

  1. It rebuilds the entire tool registry from scratch.
  2. It atomically swaps the old registry with the new one.

This allows you to update tool logic on a live server without a restart.

PyMCP supports a simple form of dependency injection. If a tool function's signature includes a parameter named tool_registry, the server will automatically provide the ToolRegistry instance to it at execution time.


Client

Connect to the server

import pymcp

async def main():
    async with pymcp.Client("localhost", 8765) as client:
        result = await client.call("ping")
        print(result)

request execute tools

import pymcp
async def main():
    async with pymcp.Client("localhost", 8765) as client:
        result = await client.call("add", a=5, b=7)
        print(f"5 + 7 = {result}")

        tools = await client.call("list_tools_available")
        print("Available tools:", tools)

Protocol

PyMCP uses a simple, JSON-based messaging protocol over a standard WebSocket connection.

  • Client-to-Server: Requests
{
  "header": {
    "correlation_id": "a1b2c3d4-e5f6-7890-1234-567890abcdef"
  },
  "body": {
    "tool": "add",
    "args": {
      "a": 5,
      "b": 10
    }
  }
}
  • Server-to-Client: Responses (Success)
{
  "status": "success",
  "header": {
    "correlation_id": "a1b2c3d4-e5f6-7890-1234-567890abcdef"
  },
  "body": {
    "tool": "add",
    "result": 15
  },
  "error": null
}
  • Server-to-Client: Responses (Error)
{
  "status": "error",
  "header": {
    "correlation_id": "a1b2c3d4-e5f6-7890-1234-567890abcdef"
  },
  "body": null,
  "error": {
    "code": "execution_error",
    "message": "An unexpected error occurred while executing tool 'add'."
  }
}

Design

PyMCP is designed to be simple, extensible, and easy to use. The server itself is just a WebSocket server that handles incoming requests, validates them, routes them to the appropriate tool executor, and returns the results.

No concept like "resources", "tools", or "prompts", since all of them are just a function that input something and return something. Everything is a tool. It leaves to user defining the scope of the tools.

The internal tools like list_tools_available and ping, are also some type of "tools". Tools and Server are decoupled. core tools are like extension of the server.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选