
Pythagraph RED MCP Server
Enables retrieval and analysis of graph data from the Pythagraph RED API. Provides formatted tables, statistics, node/edge distributions, and comprehensive summaries for graph visualization and insights.
README
pythAIs - Pythagraph RED MCP Server
Node.js server implementing Model Context Protocol (MCP) for Pythagraph RED API access.
Features
- Fetch graph data from Pythagraph RED API
- Detailed graph analysis with nodes, edges, and statistics
- Formatted table outputs for easy visualization
- Comprehensive graph summaries
- Error handling and timeout management
API Integration
This server connects to the Pythagraph RED API at:
https://red.pythagraph.co.kr/api/red/graph/exportGraphInfo.do?graphId={graphId}
Tools
get_graph_data
Retrieve detailed graph data from Pythagraph RED API. Returns comprehensive information including nodes, edges, statistics, and metadata formatted as tables and descriptions.
Input:
graphId
(string): The unique identifier for the graph to retrieve
Output:
- Detailed tables showing graph statistics
- Node type distributions
- Edge type distributions
- First 10 nodes with their properties
- First 10 edges with their relationships
- Metadata information
Example:
# MBTI(성질좋은 역순서,점유비율)
## 📊 기본 정보
| 항목 | 값 |
|------|-----|
| Graph ID | G81a6c348-4696-4f04-a164-6e306388ab92 |
| 단위 구분 | 비율 |
| 단위명 | 퍼센트(%) |
| 데이터 건수 | 16건 |
## 📈 데이터 테이블
| 시간 | MBTI유형 | 값 |
|------|----------|-----|
| 15 | ENFP | 12.6% |
| 08 | INFP | 13.4% |
| 04 | INFJ | 6.3% |
get_graph_summary
Get a concise summary of graph data from Pythagraph RED API. Provides overview statistics, node/edge type distributions, and key insights.
Input:
graphId
(string): The unique identifier for the graph to get summaryincludeDetails
(boolean, optional): Include detailed node and edge information (default: false)
Output:
- Quick overview with node and edge counts
- Node and edge type listings
- Graph density calculation
- Optional detailed tables when
includeDetails
is true
Example:
# MBTI(성질좋은 역순서,점유비율) - 요약
📊 Graph ID: G81a6c348-4696-4f04-a164-6e306388ab92
📊 데이터 건수: 16건
📊 단위: 비율 (퍼센트(%))
📅 등록일: 2023-05-22 15:01
## 🔍 핵심 인사이트
🏆 최고: INFP (13.4%)
📉 최저: ENTJ (2.7%)
📊 총합: 100.0%
Usage with Claude Desktop
Add this to your claude_desktop_config.json
:
NPX
{
"mcpServers": {
"pythAIs": {
"command": "npx",
"args": [
"-y",
"pythais-mcp-server"
]
}
}
}
Docker
{
"mcpServers": {
"pythAIs": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"mcp/pythais"
]
}
}
}
Development
Building
npm install
npm run build
Testing
npm test
Docker Build
docker build -t mcp/pythais.
API Response Format
The server expects the Pythagraph RED API to return JSON data in this format:
{
"graphId": "G81a6c348-4696-4f04-a164-6e306388ab92",
"graphNm": "MBTI(성질좋은 역순서,점유비율)",
"graphDet": "<p>MBTI 성격별 인구비율 및 성격더러운 순서</p>",
"unitDivNm": "비율",
"unitNm": "퍼센트(%)",
"link": "https://ddnews.co.kr/mbti-순위/",
"dataSrc": "https://ddnews.co.kr/mbti-순위/",
"dataOrg": "https://ddnews.co.kr/mbti-순위/",
"regUser": "kimhoon1112@gmail.com",
"regTime": "2023-05-22 15:01",
"cols": ["시간", "MBTI유형", "값"],
"cols2": ["T5", "M1", "VALUE"],
"graphData": [
["15", "ENFP", "0.126"],
["08", "INFP", "0.134"],
["04", "INFJ", "0.063"]
],
"regionList": [],
"message": "OK"
}
Error Handling
The server includes comprehensive error handling for:
- Invalid graph IDs
- Network timeouts (30 second limit)
- API response errors
- Invalid JSON responses
- Connection failures
Features
- Automatic Table Formatting: Converts graph data into readable tables
- Statistics Calculation: Computes graph density and type distributions
- Memory Efficient: Only displays first 10 nodes/edges in detailed view
- Flexible Output: Summary mode for quick insights, detailed mode for analysis
- Robust Error Handling: Graceful handling of API failures
License
This MCP server is licensed under the MIT License. This means you are free to use, modify, and distribute the software, subject to the terms and conditions of the MIT License.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。