Python Code Review MCP Agent
Enables comprehensive security vulnerability scanning and code quality analysis for Python applications. Provides detailed reports with scoring, actionable suggestions, and comparison tracking specifically designed for backend developers working with frameworks like Django, Flask, and FastAPI.
README
Python Code Review MCP Agent 🐍🔍
A comprehensive Model Context Protocol (MCP) server designed specifically for backend developers working with Python. This agent provides detailed code quality and security analysis with consistent, actionable reporting.
🎯 Key Features
🔒 Security-First Analysis
- SQL Injection Detection - String formatting, concatenation, f-strings
- Command Injection Prevention - os.system(), subprocess with shell=True
- Code Injection Scanning - eval(), exec() usage detection
- Secrets Detection - Hardcoded passwords, API keys, tokens
- Crypto Security - Weak random number generation, SSL issues
📊 Code Quality Assessment
- PEP 8 Compliance - Naming conventions, style guidelines
- Exception Handling - Bare except, broad exceptions
- Performance Patterns - Inefficient loops, list operations
- Import Management - Wildcard imports, multiple imports
- Code Complexity - Function length, maintainability
📋 Detailed Reporting
- Executive Summaries - Risk assessment, deployment readiness
- Quality Scorecards - 0-100 scoring for quality and security
- Severity Levels - Critical, High, Medium, Low prioritization
- Actionable Suggestions - Specific fix recommendations
- Comparison Reports - Before/after improvement tracking
🛠️ Available MCP Tools
1. review_python_code
Comprehensive analysis with detailed, summary, or security-focused reports.
{
"code": "your_python_code_here",
"filename": "optional_filename.py",
"reportType": "detailed" // "detailed", "summary", or "security"
}
2. security_audit
Focused security vulnerability scanning with threat analysis.
{
"code": "your_python_code_here",
"filename": "optional_filename.py"
}
3. analyze_code_quality
Deep code quality analysis with configurable focus areas.
{
"code": "your_python_code_here",
"filename": "optional_filename.py",
"includeStyle": true,
"includeMaintainability": true
}
4. compare_code_versions
Compare original vs. revised code to track improvements.
{
"originalCode": "original_version_here",
"revisedCode": "improved_version_here",
"filename": "optional_filename.py"
}
5. get_improvement_suggestions
Get targeted suggestions for specific areas of concern.
{
"code": "your_python_code_here",
"filename": "optional_filename.py",
"focusArea": "security" // "security", "quality", "performance", "style", "all"
}
🚀 Quick Start
Installation
npm install
npm run build
Running Tests
npm test
Starting the MCP Server
npm start
Running Demo
node dist/demo.js
⚙️ MCP Client Configuration
Add to your MCP client configuration:
{
"mcpServers": {
"python-code-review": {
"command": "node",
"args": ["/path/to/python_code_review_mcp/dist/index.js"]
}
}
}
📖 Usage Examples
Security Analysis
"Audit this Python Flask endpoint for security vulnerabilities"
@app.route('/user/<user_id>')
def get_user(user_id):
query = f"SELECT * FROM users WHERE id = {user_id}"
cursor.execute(query)
return cursor.fetchone()
Result: Detects SQL injection vulnerability, provides secure parameterized query solution.
Code Quality Review
"Review this data processing function for quality issues"
def process_data(items):
result = []
for i in range(len(items)):
result += [items[i].upper()]
return result
Result: Identifies performance issues, suggests enumerate() and list comprehensions.
Improvement Tracking
"Compare my original code with the improved version"
Result: Shows quality score improvements, security enhancements, and resolved issues.
🎯 Perfect for Backend Developers
🏗️ Framework Support
- Django - Models, views, security best practices
- Flask - Route handlers, authentication, security
- FastAPI - Async patterns, data validation
- SQLAlchemy - Query security, ORM patterns
🔧 Development Workflow
- Pre-commit Analysis - Catch issues before they reach production
- Code Review Assistant - Comprehensive analysis for pull requests
- Security Auditing - Regular vulnerability assessments
- Refactoring Guide - Systematic improvement tracking
📊 Quality Metrics
- Security Score (0-100) - Vulnerability risk assessment
- Quality Score (0-100) - Code quality measurement
- Issue Density - Problems per 100 lines of code
- Risk Level - Overall deployment readiness
🧪 Comprehensive Testing
- 40/40 Tests Passing - 100% test coverage
- Security Detection - All major vulnerability types
- Quality Analysis - PEP 8, best practices, performance
- Report Generation - Multiple formats and detail levels
- Edge Cases - Empty code, comments, mixed indentation
- Real-World Examples - Flask apps, Django models, data processing
🔍 Detection Capabilities
🚨 Critical Security Issues
- SQL injection vulnerabilities
- Command injection risks
- Code injection through eval/exec
- Hardcoded secrets and credentials
⚠️ High Priority Issues
- SSL verification disabled
- Subprocess with shell=True
- Broad exception handling
📋 Quality Improvements
- PEP 8 naming conventions
- Performance anti-patterns
- Import organization
- Documentation completeness
📈 Scoring System
Security Score Calculation
- 100: No security vulnerabilities detected
- 70-99: Minor security concerns
- 30-69: Moderate security risks
- 0-29: Critical security vulnerabilities
Quality Score Calculation
- 90-100: Excellent code quality
- 80-89: Good code quality
- 70-79: Fair code quality
- 60-69: Poor code quality
- 0-59: Critical quality issues
🎉 Production Ready
- ✅ Zero Dependencies - No external APIs required
- ✅ Fast Analysis - Local pattern matching
- ✅ Consistent Reports - Standardized output format
- ✅ TypeScript - Full type safety and IntelliSense
- ✅ Error Handling - Graceful failure and recovery
- ✅ MCP Standards - Compatible with all MCP clients
Transform your Python code review process with intelligent, automated analysis focused on the specific needs of backend developers! 🐍✨
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。