Python Code Runner
Enables execution of Python code in a safe environment, including running scripts, installing packages, and retrieving variable values. Supports file operations and package management through pip.
README
mcp-run-python-code
Python interpreter, MCP server, no API key, free. Get results from running Python code.
Overview
This MCP server provides tools for running Python code, installing packages, and executing Python files. It can be easily integrated with MCP clients, including Claude and other LLM applications supporting the MCP protocol.
Features
- Execute Python code in a safe environment
- Install Python packages using pip
- Save Python code to files and run them
- Run existing Python files
- Return specific variable values from executed code
- Error handling and debugging support
Installation
From pip
You can install the MCP Run Python Code Server using uv:
uv pip install mcp-run-python-code
Or using pip:
pip install mcp-run-python-code
From source
git clone https://github.com/shibing624/mcp-run-python-code.git
cd mcp-run-python-code
pip install -e .
Usage
Python Demo
from run_python_code import RunPythonCode
tool = RunPythonCode(base_dir='/tmp/tmp_run_code/')
# 示例1:基本代码执行
result = tool.run_python_code("x = 10\ny = 20\nz = x * y", "z")
print(f"结果: {result}") # 输出: 结果: 200
# 示例2:保存并运行文件
result = tool.save_to_file_and_run(
file_name="calc.py",
code="a = 5\nb = 15\nc = a + b",
variable_to_return="c"
)
print(f"结果: {result}") # 输出: 结果: 20
# 实例3:安装python包
result = tool.pip_install_package("requests")
print(f"结果: {result}")

Running as a standalone MCP server
Run the server with the stdio transport:
uvx mcp-run-python-code
or
uv run mcp-run-python-code
or
python -m mcp-run-python-code
Then, you can use the server with any MCP client that supports stdio transport.
Integrating with Cursor
To add the weather MCP server to Cursor, add stdio MCP with command:
uvx mcp-run-python-code
Tools available
run_python_code- Execute Python code and optionally return a variable valuesave_to_file_and_run- Save Python code to a file and execute itpip_install_package- Install Python packages using piprun_python_file- Run an existing Python file and optionally return a variable value
Examples
Example 1: Basic Code Execution
from run_python_code import RunPythonCode
tool = RunPythonCode(base_dir='/tmp/tmp_run_code/')
# Execute simple calculations
code = "result = 2 ** 10"
value = tool.run_python_code(code, "result")
print(value) # Output: 1024
Example 2: Run python File
from run_python_code import RunPythonCode
tool = RunPythonCode(base_dir='/tmp/tmp_run_code/')
# Save code to a file and run it
script_code = """
def fibonacci(n):
if n <= 1:
return n
return fibonacci(n-1) + fibonacci(n-2)
result = fibonacci(10)
print(f"Fibonacci(10) = {result}")
"""
result = tool.save_to_file_and_run("fib.py", script_code, "result")
print(result) # Output: 55
Example 3: Data Processing
from run_python_code import RunPythonCode
tool = RunPythonCode(base_dir='/tmp/tmp_run_code/')
# JSON data processing
code = """
import json
data = {'name': '张三', 'age': 30}
json_str = json.dumps(data, ensure_ascii=False)
"""
result = tool.run_python_code(code, "json_str")
print(result) # Output: {"name": "张三", "age": 30}
Contact
- Issues and suggestions:
- Email: xuming624@qq.com
- WeChat: Add me (WeChat ID: xuming624) with the message: "Name-Company-NLP" to join our NLP discussion group.
<img src="https://github.com/shibing624/weather-forecast-server/blob/main/docs/wechat.jpeg" width="200" />
License
This project is licensed under The Apache License 2.0 and can be used freely for commercial purposes.
Please include a link to the mcp-run-python-code project and the license in your product description.
Contribute
We welcome contributions to improve this project! Before submitting a pull request, please:
- Add appropriate unit tests in the
testsdirectory - Run
python -m pytestto ensure all tests pass - Submit your PR with clear descriptions of the changes
Acknowledgements
- Built with MCP Python SDK
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。