Python MCP Sandbox

Python MCP Sandbox

An interactive Python code execution environment that allows users and LLMs to safely execute Python code and install packages in isolated Docker containers.

Category
访问服务器

README

MCP Sandbox

Python Version License UV MCP

中文文档 | English

Python MCP Sandbox is an interactive Python code execution tool that allows users and LLMs to safely execute Python code and install packages in isolated Docker containers.

Features

  • 🐳 Docker Isolation: Securely run Python code in isolated Docker containers
  • 📦 Package Management: Easily install and manage Python packages
  • 📊 File Generation: Support for generating files and accessing them via web links

Installation

# Clone the repository
git clone https://github.com/JohanLi233/python-mcp-sandbox.git
cd python-mcp-sandbox

uv venv

# Activate venv

# Start the server
uv run mcp_sandbox.py

The default SSE endpoint is http://localhost:8000/sse, and you can interact with it via the MCP Inspector through SSE or any other client that supports SSE connections.

Available Tools

  1. create_sandbox: Creates a new Python Docker sandbox and returns its ID for subsequent code execution and package installation
  2. list_sandboxes: Lists all existing sandboxes (Docker containers) for reuse
  3. execute_python_code: Executes Python code in a specified Docker sandbox
  4. install_package_in_sandbox: Installs Python packages in a specified Docker sandbox
  5. check_package_installation_status: Checks if a package is installed or installation status in a Docker sandbox

Project Structure

python-mcp-sandbox/
├── main.py                    # Application entry point
├── requirements.txt           # Project dependencies
├── Dockerfile                 # Docker configuration for Python containers
├── results/                   # Directory for generated files
├── mcp_sandbox/               # Main package directory
│   ├── __init__.py
│   ├── models.py              # Pydantic models
│   ├── api/                   # API related components
│   │   ├── __init__.py
│   │   └── routes.py          # API route definitions
│   ├── core/                  # Core functionality
│   │   ├── __init__.py
│   │   ├── docker_manager.py  # Docker container management
│   │   └── mcp_tools.py       # MCP tools
│   └── utils/                 # Utilities
│       ├── __init__.py
│       ├── config.py          # Configuration constants
│       ├── file_manager.py    # File management
│       └── task_manager.py    # Periodic task management
└── README.md                  # Project documentation

Example Prompt

I've configured a Python code execution sandbox for you. You can run Python code using the following steps:

1. First, use the "list_sandboxes" tool to view all existing sandboxes (Docker containers).
   - You can reuse an existing sandbox_id if a sandbox exists, do not create a new one.
   - If you need a new sandbox, use the "create_sandbox" tool.
   - Each sandbox is an isolated Python environment, and the sandbox_id is required for all subsequent operations.

2. If you need to install packages, use the "install_package_in_sandbox" tool
   - Parameters: sandbox_id and package_name (e.g., numpy, pandas)
   - This starts asynchronous installation and returns immediately with status

3. After installing packages, you can check their installation status using the "check_package_installation_status" tool
   - Parameters: sandbox_id and package_name (name of the package to check)
   - If the package is still installing, you need to check again using this tool

4. Use the "execute_python_code" tool to run your code
   - Parameters: sandbox_id and code (Python code)
   - Returns output, errors and links to any generated files
   - All generated files are stored inside the sandbox, and file_links are direct HTTP links for inline viewing

Example workflow:
- Use list_sandboxes to check for available sandboxes, if no available sandboxes, use create_sandbox to create a new one → Get sandbox_id
- Use install_package_in_sandbox to install necessary packages (like pandas, matplotlib), with the sandbox_id parameter
- Use check_package_installation_status to verify package installation, with the same sandbox_id parameter
- Use execute_python_code to run your code, with the sandbox_id parameter

Code execution happens in a secure sandbox. Generated files (images, CSVs, etc.) will be provided as direct HTTP links, which can viewed inline in the browser.

Remember not to use plt.show() in your Python code. For visualizations:
- Save figures to files using plt.savefig() instead of plt.show()
- For data, use methods like df.to_csv() or df.to_excel() to save as files
- All saved files will automatically appear as HTTP links in the results, which you can open or embed directly.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选