Python MCP Server Template
A foundational template for building MCP servers in Python using Streamable HTTP transport. Provides example implementations of tools, resources, and prompts to help developers create custom MCP integrations for AI assistants.
README
mcp-server-template-python
A very simple Python template for building MCP servers using Streamable HTTP transport.
Overview
This template provides a foundation for creating MCP servers that can communicate with AI assistants and other MCP clients. It includes a simple HTTP server implementation with example tools, resources & prompts to help you get started building your own MCP integrations.
Prerequisites
- Install uv (https://docs.astral.sh/uv/getting-started/installation/)
Installation
- Clone the repository:
git clone git@github.com:alpic-ai/mcp-server-template-python.git
cd mcp-server-template-python
- Install python version & dependencies:
uv python install
uv sync --locked
Usage
Start the server on port 3000:
uv run main.py
Running the Inspector
Requirements
- Node.js: ^22.7.5
Quick Start (UI mode)
To get up and running right away with the UI, just execute the following:
npx @modelcontextprotocol/inspector
The inspector server will start up and the UI will be accessible at http://localhost:6274.
You can test your server locally by selecting:
- Transport Type: Streamable HTTP
- URL: http://127.0.0.1:3000/mcp
Development
Adding New Tools
To add a new tool, modify main.py:
@mcp.tool(
title="Your Tool Name",
description="Tool Description for the LLM",
)
async def new_tool(
tool_param1: str = Field(description="The description of the param1 for the LLM"),
tool_param2: float = Field(description="The description of the param2 for the LLM")
)-> str:
"""The new tool underlying method"""
result = await some_api_call(tool_param1, tool_param2)
return result
Adding New Resources
To add a new resource, modify main.py:
@mcp.resource(
uri="your-scheme://{param1}/{param2}",
description="Description of what this resource provides",
name="Your Resource Name",
)
def your_resource(param1: str, param2: str) -> str:
"""The resource template implementation"""
# Your resource logic here
return f"Resource content for {param1} and {param2}"
The URI template uses {param_name} syntax to define parameters that will be extracted from the resource URI and passed to your function.
Adding New Prompts
To add a new prompt , modify main.py:
@mcp.prompt("")
async def your_prompt(
prompt_param: str = Field(description="The description of the param for the user")
) -> str:
"""Generate a helpful prompt"""
return f"You are a friendly assistant, help the user and don't forget to {prompt_param}."
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。