Python notebook mcp

Python notebook mcp

Python notebook mcp

Category
访问服务器

README

<div align="center"> <h1>Python Notebook MCP</h1> <p>MCP server enabling AI assistants to interact with Jupyter notebooks through the Model Context Protocol.</p> <p> <a href="LICENSE"><img src="https://img.shields.io/badge/License-MIT-blue.svg" alt="MIT License"/></a> <img src="https://img.shields.io/badge/Python-3.10+-blue.svg" alt="Python 3.10+"/> <img src="https://img.shields.io/badge/MCP-Compatible-orange.svg" alt="MCP Compatible"/> </p> </div>

This server allows compatible AI assistants (like Cursor or Claude Desktop) to interact with Jupyter Notebook files (.ipynb) on your local machine.

📋 Prerequisites

Before you begin, ensure you have the following installed:

  1. Python: Version 3.10 or higher.
  2. uv: The fast Python package installer and virtual environment manager from Astral. If you don't have it, install it:
    # On macOS / Linux
    curl -LsSf https://astral.sh/uv/install.sh | sh
    
    # On Windows (PowerShell)
    powershell -c "irm https://astral.sh/uv/install.ps1 | iex"
    
    # IMPORTANT: Add uv to your PATH if prompted by the installer
    # For macOS/Linux (bash/zsh), add to your ~/.zshrc or ~/.bashrc:
    # export PATH="$HOME/.local/bin:$PATH"
    # Then restart your shell or run `source ~/.zshrc` (or equivalent)
    
  3. fastmcp CLI (Optional, for Claude Desktop fastmcp install): If you plan to use the fastmcp install method for Claude Desktop, you need the fastmcp command available.
    # Using uv
    uv pip install fastmcp
    
    # Or using pipx (recommended for CLI tools)
    pipx install fastmcp
    

🔧 Setup

  1. Clone the Repository:

    git clone https://github.com/UsamaK98/python-notebook-mcp.git # Or your fork/local path
    cd python-notebook-mcp
    
  2. Choose Setup Method:

    • Option A: Automated Setup (Recommended) Run the appropriate script for your OS from the project's root directory (where you just cd-ed into).

      • macOS / Linux:
        # Make script executable (if needed)
        chmod +x ./install_unix.sh
        # Run the script
        bash ./install_unix.sh
        
      • Windows (PowerShell):
        # You might need to adjust PowerShell execution policy first
        # Set-ExecutionPolicy RemoteSigned -Scope CurrentUser
        .\install_windows.ps1
        

      These scripts will create the .venv, install dependencies, and output the exact paths needed for your MCP client configuration.

    • Option B: Manual Setup Follow these steps if you prefer manual control or encounter issues with the scripts.

      1. Create & Activate Virtual Environment:
        # Create the environment (e.g., named .venv)
        uv venv
        
        # Activate the environment
        # On macOS/Linux (bash/zsh):
        source .venv/bin/activate
        # On Windows (Command Prompt):
        # .venv\Scripts\activate.bat
        # On Windows (PowerShell):
        # .venv\Scripts\Activate.ps1
        
        (You should see (.venv) or similar at the start of your shell prompt)
      2. Install Dependencies:
        # Make sure your venv is active
        uv pip install -r requirements.txt
        

▶️ Running the Server

Make sure your virtual environment (.venv) is activated if you used manual setup.

Method 1: Direct Execution (Recommended for Cursor, General Use)

This method uses uv run to execute the server script directly using your current Python environment (which should now have the dependencies installed).

  1. Run the Server:

    # From the python-notebook-mcp directory
    uv run python server.py
    

    The server will start and print status messages, including the (uninitialized) workspace directory.

  2. Client Configuration (mcp.json): Configure your MCP client (e.g., Cursor) to connect. Create or edit the client's MCP configuration file (e.g., .cursor/mcp.json in your workspace).

    Template (Recommended):

    {
      "mcpServers": {
        "jupyter": {
          // Use the absolute path to the Python executable inside your .venv
          "command": "/full/absolute/path/to/python-notebook-mcp/.venv/bin/python", // macOS/Linux
          // "command": "C:\\full\\absolute\\path\\to\\python-notebook-mcp\\.venv\\Scripts\\python.exe", // Windows
          "args": [
              // Absolute path to the server script
              "/full/absolute/path/to/python-notebook-mcp/server.py"
            ],
          "autoApprove": ["initialize_workspace"] // Optional: Auto-approve certain safe tools
        }
      }
    }
    

    ❓ Why the full path to Python? GUI applications like Cursor might not inherit the same PATH environment as your terminal. Specifying the exact path to the Python interpreter inside your .venv ensures the server runs with the correct environment and dependencies. ⚠️ IMPORTANT: Replace the placeholder paths with the actual absolute paths on your system.

Method 2: Claude Desktop Integration (fastmcp install)

This method uses the fastmcp tool to create a dedicated, isolated environment for the server and register it with Claude Desktop. You generally don't need to activate the .venv manually for this method, as fastmcp install handles environment creation.

  1. Install the Server for Claude:
    # From the python-notebook-mcp directory
    fastmcp install server.py --name "Jupyter Notebook MCP"
    
    • fastmcp install uses uv behind the scenes to create the environment and install dependencies from requirements.txt.
    • The server will now appear in the Claude Desktop developer settings and can be enabled there. You generally don't need to manually edit claude_desktop_config.json when using fastmcp install.

📘 Usage

Key Concept: Workspace Initialization

Regardless of how you run the server, the first action you must take from your AI assistant is to initialize the workspace. This tells the server where your project files and notebooks are located.

# Example tool call from the client (syntax may vary)
initialize_workspace(directory="/full/absolute/path/to/your/project_folder")

⚠️ You must provide the full absolute path to the directory containing your notebooks. Relative paths or paths like . are not accepted. The server will confirm the path and list any existing notebooks found.

Core Operations

Once the workspace is initialized, you can use the available tools:

# List notebooks
list_notebooks()

# Create a new notebook
create_notebook(filepath="analysis/new_analysis.ipynb", title="My New Analysis")

# Add a code cell to the notebook
add_cell(filepath="analysis/new_analysis.ipynb", content="import pandas as pd\ndf = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})\ndf.head()", cell_type="code")

# Read the first cell (index 0)
read_cell(filepath="analysis/new_analysis.ipynb", cell_index=0)

# Edit the second cell (index 1)
edit_cell(filepath="analysis/new_analysis.ipynb", cell_index=1, content="# This is updated markdown")

# Read the output of the second cell (index 1) after execution (if any)
read_cell_output(filepath="analysis/new_analysis.ipynb", cell_index=1)

# Read the entire notebook structure
read_notebook(filepath="analysis/new_analysis.ipynb")

🛠️ Available Tools

Tool Description
initialize_workspace REQUIRED FIRST STEP. Sets the absolute path for the workspace.
list_notebooks Lists all .ipynb files found within the workspace directory.
create_notebook Creates a new, empty Jupyter notebook if it doesn't exist.
read_notebook Reads the entire structure and content of a notebook.
read_cell Reads the content and metadata of a specific cell by index.
edit_cell Modifies the source content of an existing cell by index.
add_cell Adds a new code or markdown cell at a specific index or the end.
read_notebook_outputs Reads all outputs from all code cells in a notebook.
read_cell_output Reads the output(s) of a specific code cell by index.

🧪 Development & Debugging

If you need to debug the server itself:

  • Run Directly: Use uv run python server.py and observe the terminal output for errors or print statements.
  • FastMCP Dev Mode: For interactive testing with the MCP Inspector:
    # Make sure fastmcp is installed in your environment
    # uv pip install fastmcp
    uv run fastmcp dev server.py
    

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选