PyTorch Documentation Search Tool
Provides semantic search capabilities over PyTorch documentation, enabling users to find relevant documentation, APIs, code examples, and error messages through Claude Code integration.
README
PyTorch Documentation Search Tool
A semantic search tool for PyTorch documentation with MCP integration for Claude Code.
Overview
This tool provides semantic search capabilities over PyTorch documentation, allowing users to find relevant documentation, APIs, code examples, and error messages. It utilizes vector embeddings and semantic similarity to provide high-quality search results.
Features
- Semantic search for PyTorch documentation
- Code-aware search results (differentiates between code and text)
- Easy integration with Claude Code via MCP
- Multiple transport options (STDIO, SSE, UVX)
- Configurable search parameters and result formatting
Installation
Environment Setup
Create a conda environment with all dependencies:
conda env create -f environment.yml
conda activate pytorch_docs_search
For a minimal environment:
conda env create -f minimal_env.yml
conda activate pytorch_docs_search_min
API Key Setup
The tool requires an OpenAI API key for generating embeddings:
export OPENAI_API_KEY=your_key_here
MCP Integration
The tool can be integrated with Claude Code in three ways:
1. Direct STDIO Integration (Local Development)
# Register with Claude CLI
./register_mcp.sh
# This runs:
# claude mcp add search_pytorch_docs stdio ./run_mcp.sh
2. SSE Integration (Server Deployment)
# Start the server
python -m ptsearch.server --transport sse --host 0.0.0.0 --port 5000
# Register with Claude CLI
claude mcp add search_pytorch_docs http://localhost:5000/events --transport sse
3. UVX Integration (Packaged Distribution)
# Run with UVX
./run_mcp_uvx.sh
# This executes:
# uvx mcp-server-pytorch --transport sse --host 127.0.0.1 --port 5000 --data-dir ./data
Usage
Once registered with Claude Code, you can use the tool by asking questions about PyTorch:
How do I implement a custom dataset in PyTorch?
Claude Code will automatically use the PyTorch Documentation Search Tool to find relevant documentation.
Direct CLI Usage
You can also use the tool directly:
# Search from command line
python -m ptsearch.server --transport stdio --data-dir ./data
Architecture
ptsearch/server.py: Unified server implementationptsearch/protocol/: MCP protocol handlingptsearch/transport/: Transport implementations (STDIO, SSE)ptsearch/core/: Core search functionality
Development
Running Tests
pytest -v tests/
Format Code
black .
License
MIT License
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。