PyWeatherMCP

PyWeatherMCP

Provides weather information for US locations using the National Weather Service API. Offers weather alerts, 5-day forecasts, and location management with favorites and search history tracking.

Category
访问服务器

README

PyWeatherMCP

A Model Context Protocol (MCP) server that provides weather information using the National Weather Service API. This server offers weather alerts, forecasts, and location management features for MCP-compatible clients.

Features

  • 🌦️ Weather Alerts: Get active weather alerts for any US state
  • 📍 Weather Forecasts: Get 5-day weather forecasts for any US location
  • Favorite Locations: Save and manage your favorite weather locations
  • 📊 Search History: Track your weather queries
  • 🔄 Memory Persistence: Automatically saves your preferences and history

Prerequisites

  • Python 3.14 or higher
  • Internet connection (for API calls to National Weather Service)

Installation

Using uv (Recommended)

  1. Clone the repository:

    git clone https://github.com/yourusername/pyweathermcp.git
    cd pyweathermcp
    
  2. Install dependencies using uv:

    uv sync
    

Using pip

  1. Clone the repository:

    git clone https://github.com/yourusername/pyweathermcp.git
    cd pyweathermcp
    
  2. Create a virtual environment:

    python -m venv .venv
    source .venv/bin/activate  # On Windows: .venv\Scripts\activate
    
  3. Install dependencies:

    pip install -e .
    

Usage

Running the MCP Server

To run the weather MCP server:

python weather.py

The server will start and listen for MCP protocol messages via stdio.

Available Tools

1. Get Weather Alerts

Get active weather alerts for a US state.

Parameters:

  • state (string): Two-letter US state code (e.g., "CA", "NY", "TX")

Example:

get_alerts("CA")

2. Get Weather Forecast

Get a 5-day weather forecast for a specific location.

Parameters:

  • latitude (float): Latitude coordinate
  • longitude (float): Longitude coordinate
  • location_name (string, optional): Human-readable name for the location

Example:

get_forecast(37.7749, -122.4194, "San Francisco, CA")

3. Save Favorite Location

Save a location to your favorites for quick access.

Parameters:

  • name (string): Name of the location
  • latitude (float): Latitude coordinate
  • longitude (float): Longitude coordinate

Example:

save_favorite("Home", 40.7128, -74.0060)

4. Get Favorite Locations

Retrieve all saved favorite locations.

Example:

get_favorites()

5. Get Search History

View your recent weather searches.

Parameters:

  • limit (int, optional): Number of recent searches to show (default: 10)

Example:

get_history(5)

6. Clear Search History

Clear all search history while keeping favorites.

Example:

clear_history()

Available Resources

Server Information

Get information about the weather server and its capabilities.

Resource URI: weather://info

Usage Statistics

Get usage statistics including search count and favorite locations.

Resource URI: weather://stats

Available Prompts

Quick Weather Check

A template prompt for quick weather checks using your favorite locations.

Prompt: quick_weather_prompt

Data Storage

The server automatically creates and maintains a weather_memory.json file to store:

  • Search history
  • Favorite locations
  • Usage statistics

This file is created automatically on first use and is excluded from version control.

API Information

This server uses the National Weather Service API (https://api.weather.gov), which:

  • Provides free weather data for the United States
  • Requires no API key or authentication
  • Has rate limits (please be respectful)
  • Covers all US states and territories

Error Handling

The server includes robust error handling:

  • Network timeouts (30 seconds)
  • Invalid coordinates or state codes
  • API service unavailability
  • Graceful fallbacks for missing data

Development

Project Structure

pyweathermcp/
├── weather.py          # Main MCP server implementation
├── main.py            # Simple entry point
├── test_imports.py    # Import testing utility
├── pyproject.toml     # Project configuration and dependencies
├── weather_memory.json # User data storage (auto-generated)
├── .gitignore         # Git ignore rules
└── README.md          # This file

Dependencies

  • httpx>=0.28.1: Modern HTTP client for API requests
  • mcp>=1.18.0: Model Context Protocol server framework

Testing Imports

To verify all dependencies are properly installed:

python test_imports.py

Contributing

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add some amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

License

This project is open source and available under the MIT License.

Support

If you encounter any issues or have questions:

  1. Check the Issues page
  2. Create a new issue with detailed information
  3. Include error messages and steps to reproduce

Changelog

v0.1.0

  • Initial release
  • Weather alerts and forecasts
  • Favorite locations management
  • Search history tracking
  • Memory persistence

Note: This server is designed to work with MCP-compatible clients. Make sure your client supports the MCP protocol for the best experience.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选