PyWeatherMCP
Provides weather information for US locations using the National Weather Service API. Offers weather alerts, 5-day forecasts, and location management with favorites and search history tracking.
README
PyWeatherMCP
A Model Context Protocol (MCP) server that provides weather information using the National Weather Service API. This server offers weather alerts, forecasts, and location management features for MCP-compatible clients.
Features
- 🌦️ Weather Alerts: Get active weather alerts for any US state
- 📍 Weather Forecasts: Get 5-day weather forecasts for any US location
- ⭐ Favorite Locations: Save and manage your favorite weather locations
- 📊 Search History: Track your weather queries
- 🔄 Memory Persistence: Automatically saves your preferences and history
Prerequisites
- Python 3.14 or higher
- Internet connection (for API calls to National Weather Service)
Installation
Using uv (Recommended)
-
Clone the repository:
git clone https://github.com/yourusername/pyweathermcp.git cd pyweathermcp -
Install dependencies using uv:
uv sync
Using pip
-
Clone the repository:
git clone https://github.com/yourusername/pyweathermcp.git cd pyweathermcp -
Create a virtual environment:
python -m venv .venv source .venv/bin/activate # On Windows: .venv\Scripts\activate -
Install dependencies:
pip install -e .
Usage
Running the MCP Server
To run the weather MCP server:
python weather.py
The server will start and listen for MCP protocol messages via stdio.
Available Tools
1. Get Weather Alerts
Get active weather alerts for a US state.
Parameters:
state(string): Two-letter US state code (e.g., "CA", "NY", "TX")
Example:
get_alerts("CA")
2. Get Weather Forecast
Get a 5-day weather forecast for a specific location.
Parameters:
latitude(float): Latitude coordinatelongitude(float): Longitude coordinatelocation_name(string, optional): Human-readable name for the location
Example:
get_forecast(37.7749, -122.4194, "San Francisco, CA")
3. Save Favorite Location
Save a location to your favorites for quick access.
Parameters:
name(string): Name of the locationlatitude(float): Latitude coordinatelongitude(float): Longitude coordinate
Example:
save_favorite("Home", 40.7128, -74.0060)
4. Get Favorite Locations
Retrieve all saved favorite locations.
Example:
get_favorites()
5. Get Search History
View your recent weather searches.
Parameters:
limit(int, optional): Number of recent searches to show (default: 10)
Example:
get_history(5)
6. Clear Search History
Clear all search history while keeping favorites.
Example:
clear_history()
Available Resources
Server Information
Get information about the weather server and its capabilities.
Resource URI: weather://info
Usage Statistics
Get usage statistics including search count and favorite locations.
Resource URI: weather://stats
Available Prompts
Quick Weather Check
A template prompt for quick weather checks using your favorite locations.
Prompt: quick_weather_prompt
Data Storage
The server automatically creates and maintains a weather_memory.json file to store:
- Search history
- Favorite locations
- Usage statistics
This file is created automatically on first use and is excluded from version control.
API Information
This server uses the National Weather Service API (https://api.weather.gov), which:
- Provides free weather data for the United States
- Requires no API key or authentication
- Has rate limits (please be respectful)
- Covers all US states and territories
Error Handling
The server includes robust error handling:
- Network timeouts (30 seconds)
- Invalid coordinates or state codes
- API service unavailability
- Graceful fallbacks for missing data
Development
Project Structure
pyweathermcp/
├── weather.py # Main MCP server implementation
├── main.py # Simple entry point
├── test_imports.py # Import testing utility
├── pyproject.toml # Project configuration and dependencies
├── weather_memory.json # User data storage (auto-generated)
├── .gitignore # Git ignore rules
└── README.md # This file
Dependencies
httpx>=0.28.1: Modern HTTP client for API requestsmcp>=1.18.0: Model Context Protocol server framework
Testing Imports
To verify all dependencies are properly installed:
python test_imports.py
Contributing
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add some amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
License
This project is open source and available under the MIT License.
Support
If you encounter any issues or have questions:
- Check the Issues page
- Create a new issue with detailed information
- Include error messages and steps to reproduce
Changelog
v0.1.0
- Initial release
- Weather alerts and forecasts
- Favorite locations management
- Search history tracking
- Memory persistence
Note: This server is designed to work with MCP-compatible clients. Make sure your client supports the MCP protocol for the best experience.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。