QA-MCP: Test Standardization & Orchestration Server

QA-MCP: Test Standardization & Orchestration Server

Enables LLM clients to generate standardized test cases, perform quality control with lint scoring, convert to Xray/Jira format, and compose test suites (Smoke/Regression/E2E) with coverage analysis.

Category
访问服务器

README

QA-MCP: Test Standardization & Orchestration Server

<div align="center">

Version Python License MCP Tests Docker

🇬🇧 English | 🇹🇷 Türkçe

</div>


🇬🇧 English

An MCP server that enables LLM clients to perform standardized test case generation, quality control, Xray format conversion, and test suite composition.

🎯 Problem

Common issues in enterprise QA:

  • Inconsistent test case formats: Different people write in different formats → not reusable
  • No standard in Xray/Jira: Missing fields, unclear datasets, ambiguous steps
  • Smoke/Regression distinction depends on individuals: Sprint-based planning is difficult
  • When writing tests with LLM, same suggestions return or critical negative scenarios are missed

✨ Solution

QA-MCP provides:

  • Single test standard: Everyone produces/improves with the same template
  • Quality gate: Lint score + missing field detection
  • Xray compatible output: Importable JSON
  • Test suite/plan composition: Smoke/Regression/E2E suggestions + tagging
  • Secure container deployment: Runnable from Docker Hub

📦 Installation

With pip

pip install qa-mcp

From source

git clone https://github.com/Atakan-Emre/McpTestGenerator.git
cd McpTestGenerator
pip install -e .

With Docker

docker pull atakanemree/qa-mcp:latest
docker run -i atakanemree/qa-mcp:latest

🚀 Usage

MCP Client Connection

Cursor / Claude Desktop

Add to your mcp.json or claude_desktop_config.json:

{
  "mcpServers": {
    "qa-mcp": {
      "command": "qa-mcp",
      "args": []
    }
  }
}

With Docker

{
  "mcpServers": {
    "qa-mcp": {
      "command": "docker",
      "args": ["run", "-i", "--rm", "atakanemree/qa-mcp:1.0.0"]
    }
  }
}

🔧 Tools

Tool Description
testcase.generate Generate standardized test cases from feature & acceptance criteria
testcase.lint Analyze test case quality, return score and improvement suggestions
testcase.normalize Convert Gherkin/Markdown → Standard format
testcase.to_xray Export to Xray/Jira import format
suite.compose Create Smoke/Regression/E2E test suites
suite.coverage_report Generate test coverage analysis

📚 Resources

URI Description
qa://standards/testcase/v1 Test case standard
qa://checklists/lint-rules/v1 Lint rules
qa://mappings/xray/v1 Xray field mapping
qa://examples/good/* Good test case examples
qa://examples/bad/* Bad test case examples

💬 Prompts

Prompt Description
create-manual-test Create Xray Manual Test
select-smoke-tests Smoke test selection
generate-negative-scenarios Generate negative scenarios
review-test-coverage Test coverage analysis

🐳 Docker

# Pull image
docker pull atakanemree/qa-mcp:latest

# Run (stdio mode - default, most secure)
docker run -i --rm atakanemree/qa-mcp:1.0.0

# With environment variables
docker run -i --rm \
  -e LOG_LEVEL=debug \
  -e ENABLE_WRITE_TOOLS=false \
  atakanemree/qa-mcp:1.0.0

🔒 Security

Variable Default Description
ENABLE_WRITE_TOOLS false Enables Jira/Xray write tools
LOG_LEVEL info Log level (debug, info, warning, error)
AUDIT_LOG_ENABLED true Enables audit logging
HTTP_ENABLED false Enables HTTP transport
HTTP_PORT 8080 HTTP port

🗺️ Roadmap

  • [x] v1.0 - MVP: generate, lint, to_xray, compose
  • [ ] v1.1 - Policy/guardrails, audit logs
  • [ ] v1.2 - Jira/Xray sync (read-only)
  • [ ] v2.0 - HTTP transport, OAuth

🇹🇷 Türkçe

LLM istemcilerinin bağlanıp standart test case üretme, kalite kontrol, Xray formatına çevirme ve test set kompozisyonu yapabildiği bir MCP sunucusu.

🎯 Problem

Kurumsal QA'da tipik sorunlar:

  • Test case formatı dağınık: Farklı kişiler farklı biçimde yazar → tekrar kullanılamaz
  • Xray/Jira'da standard yok: Alanlar eksik, dataset belirsiz, adımlar muğlak
  • Smoke/Regression ayrımı kişiye bağlı: Sprint bazlı planlama zor
  • LLM ile test yazdırınca aynı öneriler dönüyor veya kritik negatif senaryolar kaçıyor

✨ Çözüm

QA-MCP şunları sağlar:

  • Tek test standardı: Herkes aynı şablonla üretir/iyileştirir
  • Kalite kapısı (quality gate): Lint skoru + eksik alan tespiti
  • Xray uyumlu çıktı: Import edilebilir JSON
  • Test set/plan kompozisyonu: Smoke/Regression/E2E önerisi + etiketleme
  • Güvenli container dağıtımı: Docker Hub'dan çalıştırılabilir

📦 Kurulum

pip ile

pip install qa-mcp

Kaynak koddan

git clone https://github.com/Atakan-Emre/McpTestGenerator.git
cd McpTestGenerator
pip install -e .

Docker ile

docker pull atakanemree/qa-mcp:latest
docker run -i atakanemree/qa-mcp:latest

🚀 Kullanım

MCP İstemcisi ile Bağlantı

Cursor / Claude Desktop

mcp.json veya claude_desktop_config.json dosyasına ekleyin:

{
  "mcpServers": {
    "qa-mcp": {
      "command": "qa-mcp",
      "args": []
    }
  }
}

Docker ile

{
  "mcpServers": {
    "qa-mcp": {
      "command": "docker",
      "args": ["run", "-i", "--rm", "atakanemree/qa-mcp:1.0.0"]
    }
  }
}

🔧 Tools

Tool Açıklama
testcase.generate Feature ve acceptance criteria'dan standart test case üretir
testcase.lint Test case kalitesini analiz eder, skor ve öneriler döner
testcase.normalize Gherkin/Markdown → Standart format dönüşümü
testcase.to_xray Xray/Jira import formatına çevirir
suite.compose Smoke/Regression/E2E test suite oluşturur
suite.coverage_report Test kapsam analizi raporu üretir

📚 Resources

URI Açıklama
qa://standards/testcase/v1 Test case standardı
qa://checklists/lint-rules/v1 Lint kuralları
qa://mappings/xray/v1 Xray alan eşlemesi
qa://examples/good/* İyi test case örnekleri
qa://examples/bad/* Kötü test case örnekleri

💬 Prompts

Prompt Açıklama
create-manual-test Xray Manual Test oluşturma
select-smoke-tests Smoke test seçimi
generate-negative-scenarios Negatif senaryo üretimi
review-test-coverage Test kapsam analizi

🐳 Docker

# Image çekme
docker pull atakanemree/qa-mcp:latest

# Çalıştırma (stdio mode - varsayılan, en güvenli)
docker run -i --rm atakanemree/qa-mcp:1.0.0

# Environment variables ile
docker run -i --rm \
  -e LOG_LEVEL=debug \
  -e ENABLE_WRITE_TOOLS=false \
  atakanemree/qa-mcp:1.0.0

🔒 Güvenlik

Değişken Varsayılan Açıklama
ENABLE_WRITE_TOOLS false Jira/Xray yazma tool'larını etkinleştirir
LOG_LEVEL info Log seviyesi (debug, info, warning, error)
AUDIT_LOG_ENABLED true Audit log'u etkinleştirir
HTTP_ENABLED false HTTP transport'u etkinleştirir
HTTP_PORT 8080 HTTP port

🗺️ Yol Haritası

  • [x] v1.0 - MVP: generate, lint, to_xray, compose
  • [ ] v1.1 - Policy/guardrails, audit logs
  • [ ] v1.2 - Jira/Xray sync (read-only)
  • [ ] v2.0 - HTTP transport, OAuth

📄 License / Lisans

MIT License - Copyright (c) 2024-2026 Atakan Emre

🤝 Contributing / Katkıda Bulunma

  1. Fork the repository / Fork yapın
  2. Create feature branch / Feature branch oluşturun (git checkout -b feature/amazing-feature)
  3. Commit your changes / Commit yapın (git commit -m 'Add amazing feature')
  4. Push to branch / Push yapın (git push origin feature/amazing-feature)
  5. Open a Pull Request / Pull Request açın

👤 Developer / Geliştirici

Atakan Emre


<div align="center">

Standardize test quality with QA-MCP! 🚀

QA-MCP ile test kalitesini standardize edin! 🚀

GitHub Stars GitHub Forks

</div>

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选