QML-MCP
Enables quantum machine learning operations using Qiskit, including executing quantum circuits, computing quantum kernels, training variational quantum classifiers, and evaluating quantum ML models.
README
QML-MCP: Quantum Machine Learning MCP Server
A Model Context Protocol (MCP) server for Quantum Machine Learning using Qiskit.
Features
- Quantum Circuit Execution: Run quantum circuits with configurable shots
- Quantum Kernel Computation: Compute quantum kernels for ML tasks
- Variational Quantum Classifier (VQC): Train quantum classifiers
- Model Evaluation: Evaluate trained quantum ML models
- Safety Limits: Configurable limits on qubits and shots
- Structured Logging: Comprehensive logging for debugging
- Error Handling: Detailed error messages with tracebacks
Installation
pip install -e .
For development:
pip install -e ".[dev]"
Requirements
- Python >= 3.10
- Qiskit >= 1.0.0, < 2.0.0 (Note: Qiskit Machine Learning 0.8.4 requires Qiskit 1.x)
- Qiskit Machine Learning >= 0.8.4
- MCP >= 0.9.0
Note on Qiskit Version: While Qiskit 2.0+ is available, Qiskit Machine Learning 0.8.4 (the latest stable version) requires Qiskit 1.x. This implementation uses Qiskit 1.4.5+ which provides all necessary quantum ML features.
Configuration
The server can be configured via environment variables:
QML_MCP_QUANTUM_MAX_SHOTS: Maximum shots per circuit (default: 100000)QML_MCP_QUANTUM_MAX_QUBITS: Maximum qubits allowed (default: 10)QML_MCP_QUANTUM_DEFAULT_SHOTS: Default shots for circuits (default: 1024)QML_MCP_LOG_LEVEL: Logging level (default: INFO)QML_MCP_ENABLE_DETAILED_ERRORS: Include detailed error traces (default: true)
Usage
Running the Server
python server.py
Available Tools
1. run_quantum_circuit
Execute a quantum circuit and get measurement results.
Parameters:
qasm(required): Quantum circuit in QASM3 formatshots(optional): Number of measurement shots (default: 1024)
Example:
{
"qasm": "OPENQASM 3.0;\ninclude \"stdgates.inc\";\nqubit[2] q;\nbit[2] c;\nh q[0];\ncx q[0], q[1];\nc[0] = measure q[0];\nc[1] = measure q[1];",
"shots": 1000
}
2. compute_quantum_kernel
Compute quantum kernel matrix for ML tasks using ZZ feature map.
Parameters:
train_data(required): Training data as 2D arraytest_data(optional): Test data as 2D arrayfeature_dimension(optional): Number of features
Example:
{
"train_data": [[0.1, 0.2], [0.3, 0.4], [0.5, 0.6]],
"test_data": [[0.7, 0.8]]
}
3. train_vqc
Train a Variational Quantum Classifier.
Parameters:
X_train(required): Training features as 2D arrayy_train(required): Training labels as 1D arrayfeature_dimension(optional): Number of featuresmax_iter(optional): Maximum optimization iterations (default: 100)
Example:
{
"X_train": [[0.1, 0.2], [0.2, 0.3], [0.8, 0.9], [0.9, 0.8]],
"y_train": [0, 0, 1, 1],
"max_iter": 50
}
Returns a base64-encoded trained model.
4. evaluate_model
Evaluate a trained quantum ML model.
Parameters:
model(required): Base64-encoded trained modelX_test(required): Test features as 2D arrayy_test(optional): Test labels for accuracy computation
Example:
{
"model": "gASVPAIAAA...",
"X_test": [[0.15, 0.25], [0.85, 0.95]],
"y_test": [0, 1]
}
Testing
Run tests:
pytest tests/
Run with coverage:
pytest --cov=. --cov-report=html tests/
Project Structure
qml-mcp/
├── server.py # Main MCP server
├── config.py # Configuration with Pydantic
├── qml/ # Quantum ML utilities
│ ├── __init__.py
│ └── utils.py # Core QML functions
├── tools/ # Additional tools
├── resources/ # MCP resources
├── prompts/ # Prompt templates
├── tests/ # Test suite
│ ├── test_config.py
│ └── test_qml_utils.py
└── pyproject.toml # Project metadata
Safety and Limits
The server implements several safety mechanisms:
- Qubit Limits: Maximum number of qubits per circuit (default: 10)
- Shot Limits: Maximum measurement shots (default: 100000)
- Input Validation: All inputs are validated before processing
- Error Handling: Comprehensive error messages with optional tracebacks
License
MIT License - see LICENSE file for details.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。