QML-MCP

QML-MCP

Enables quantum machine learning operations using Qiskit, including executing quantum circuits, computing quantum kernels, training variational quantum classifiers, and evaluating quantum ML models.

Category
访问服务器

README

QML-MCP: Quantum Machine Learning MCP Server

A Model Context Protocol (MCP) server for Quantum Machine Learning using Qiskit.

Features

  • Quantum Circuit Execution: Run quantum circuits with configurable shots
  • Quantum Kernel Computation: Compute quantum kernels for ML tasks
  • Variational Quantum Classifier (VQC): Train quantum classifiers
  • Model Evaluation: Evaluate trained quantum ML models
  • Safety Limits: Configurable limits on qubits and shots
  • Structured Logging: Comprehensive logging for debugging
  • Error Handling: Detailed error messages with tracebacks

Installation

pip install -e .

For development:

pip install -e ".[dev]"

Requirements

  • Python >= 3.10
  • Qiskit >= 1.0.0, < 2.0.0 (Note: Qiskit Machine Learning 0.8.4 requires Qiskit 1.x)
  • Qiskit Machine Learning >= 0.8.4
  • MCP >= 0.9.0

Note on Qiskit Version: While Qiskit 2.0+ is available, Qiskit Machine Learning 0.8.4 (the latest stable version) requires Qiskit 1.x. This implementation uses Qiskit 1.4.5+ which provides all necessary quantum ML features.

Configuration

The server can be configured via environment variables:

  • QML_MCP_QUANTUM_MAX_SHOTS: Maximum shots per circuit (default: 100000)
  • QML_MCP_QUANTUM_MAX_QUBITS: Maximum qubits allowed (default: 10)
  • QML_MCP_QUANTUM_DEFAULT_SHOTS: Default shots for circuits (default: 1024)
  • QML_MCP_LOG_LEVEL: Logging level (default: INFO)
  • QML_MCP_ENABLE_DETAILED_ERRORS: Include detailed error traces (default: true)

Usage

Running the Server

python server.py

Available Tools

1. run_quantum_circuit

Execute a quantum circuit and get measurement results.

Parameters:

  • qasm (required): Quantum circuit in QASM3 format
  • shots (optional): Number of measurement shots (default: 1024)

Example:

{
  "qasm": "OPENQASM 3.0;\ninclude \"stdgates.inc\";\nqubit[2] q;\nbit[2] c;\nh q[0];\ncx q[0], q[1];\nc[0] = measure q[0];\nc[1] = measure q[1];",
  "shots": 1000
}

2. compute_quantum_kernel

Compute quantum kernel matrix for ML tasks using ZZ feature map.

Parameters:

  • train_data (required): Training data as 2D array
  • test_data (optional): Test data as 2D array
  • feature_dimension (optional): Number of features

Example:

{
  "train_data": [[0.1, 0.2], [0.3, 0.4], [0.5, 0.6]],
  "test_data": [[0.7, 0.8]]
}

3. train_vqc

Train a Variational Quantum Classifier.

Parameters:

  • X_train (required): Training features as 2D array
  • y_train (required): Training labels as 1D array
  • feature_dimension (optional): Number of features
  • max_iter (optional): Maximum optimization iterations (default: 100)

Example:

{
  "X_train": [[0.1, 0.2], [0.2, 0.3], [0.8, 0.9], [0.9, 0.8]],
  "y_train": [0, 0, 1, 1],
  "max_iter": 50
}

Returns a base64-encoded trained model.

4. evaluate_model

Evaluate a trained quantum ML model.

Parameters:

  • model (required): Base64-encoded trained model
  • X_test (required): Test features as 2D array
  • y_test (optional): Test labels for accuracy computation

Example:

{
  "model": "gASVPAIAAA...",
  "X_test": [[0.15, 0.25], [0.85, 0.95]],
  "y_test": [0, 1]
}

Testing

Run tests:

pytest tests/

Run with coverage:

pytest --cov=. --cov-report=html tests/

Project Structure

qml-mcp/
├── server.py              # Main MCP server
├── config.py              # Configuration with Pydantic
├── qml/                   # Quantum ML utilities
│   ├── __init__.py
│   └── utils.py          # Core QML functions
├── tools/                 # Additional tools
├── resources/             # MCP resources
├── prompts/               # Prompt templates
├── tests/                 # Test suite
│   ├── test_config.py
│   └── test_qml_utils.py
└── pyproject.toml        # Project metadata

Safety and Limits

The server implements several safety mechanisms:

  • Qubit Limits: Maximum number of qubits per circuit (default: 10)
  • Shot Limits: Maximum measurement shots (default: 100000)
  • Input Validation: All inputs are validated before processing
  • Error Handling: Comprehensive error messages with optional tracebacks

License

MIT License - see LICENSE file for details.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选