QuantConnect MCP Server
LLM Driven Trading Platform Orchestration - Strategy Design, Research & Implementation
README
<div align="center">
🚀 QuantConnect MCP Server
Professional-grade Model Context Protocol server for QuantConnect's algorithmic trading platform
Seamlessly integrate QuantConnect's research environment, statistical analysis, and portfolio optimization into your AI workflows
🎯 Quick Start • 📖 Documentation • 🏗️ Architecture • 🤝 Contributing
</div>
✨ Why QuantConnect MCP Server?
Transform your algorithmic trading research with a production-ready MCP server that provides:
- 🧪 Research Environment: Full QuantBook integration for interactive financial analysis
- 📊 Advanced Analytics: PCA, cointegration testing, mean reversion analysis, and correlation studies
- 🎯 Portfolio Optimization: Sophisticated sparse optimization with Huber Downward Risk minimization
- 🌐 Universe Selection: ETF constituent analysis and multi-criteria asset screening
- 🔐 Enterprise Security: SHA-256 authenticated API integration with QuantConnect
- ⚡ High Performance: Async-first design with concurrent data processing
📋 Table of Contents
- 🎯 Quick Start
- 🛠️ Installation
- 🔑 Authentication
- 🚀 Usage Examples
- 📖 Comprehensive API Reference
- 🏗️ Architecture
- 🔧 Advanced Configuration
- 🧪 Testing
- 🤝 Contributing
- 📄 License
🎯 Quick Start
Get up and running in under 3 minutes:
1. Install Dependencies
# Clone the repository
git clone https://github.com/your-org/quantconnect-mcp
cd quantconnect-mcp
# Install with uv (recommended)
uv sync
# Or with pip
pip install -e .
2. Set Up QuantConnect Credentials
export QUANTCONNECT_USER_ID="your_user_id"
export QUANTCONNECT_API_TOKEN="your_api_token"
export QUANTCONNECT_ORGANIZATION_ID="your_org_id" # Optional
3. Launch the Server
# STDIO transport (default)
python main.py
# HTTP transport
MCP_TRANSPORT=streamable-http MCP_PORT=8000 python main.py
4. Start Analyzing
# Initialize research environment
await initialize_quantbook(instance_name="research")
# Add securities for analysis
await add_multiple_equities(["AAPL", "MSFT", "GOOGL", "AMZN"], resolution="Daily")
# Perform sophisticated analysis
await perform_pca_analysis(
symbols=["AAPL", "MSFT", "GOOGL", "AMZN"],
start_date="2023-01-01",
end_date="2024-01-01"
)
🛠️ Installation
Prerequisites
- Python 3.12+ (Type-annotated for maximum reliability)
- QuantConnect LEAN (Installation Guide)
- Active QuantConnect Account with API access
Standard Installation
# Using uv (fastest)
uv sync
# Using pip
pip install -e .
# Development installation with testing tools
uv sync --dev
Verify Installation
# Check server health
python -c "from src.server import mcp; print('✅ Installation successful')"
# Run test suite
pytest tests/ -v
🔑 Authentication
Getting Your Credentials
| Credential | Where to Find | Required |
|---|---|---|
| User ID | Email received when signing up | ✅ Yes |
| API Token | QuantConnect Settings | ✅ Yes |
| Organization ID | Organization URL: /organization/{ID} |
⚪ Optional |
Configuration Methods
Method 1: Environment Variables (Recommended)
# Add to your .bashrc, .zshrc, or .env file
export QUANTCONNECT_USER_ID="123456"
export QUANTCONNECT_API_TOKEN="your_secure_token_here"
export QUANTCONNECT_ORGANIZATION_ID="your_org_id" # Optional
Method 2: Runtime Configuration
# Configure programmatically
await configure_quantconnect_auth(
user_id="123456",
api_token="your_secure_token_here",
organization_id="your_org_id" # Optional
)
# Validate configuration
result = await validate_quantconnect_auth()
print(f"Auth Status: {result['authenticated']}")
Method 3: Interactive Setup
# Check current status
status = await get_auth_status()
# Test API connectivity
test_result = await test_quantconnect_api()
🚀 Usage Examples
Financial Research Pipeline
# 1. Initialize research environment
await initialize_quantbook(instance_name="research_2024")
# 2. Build universe from ETF constituents
await add_etf_universe_securities(
etf_ticker="QQQ",
date="2024-01-01",
resolution="Daily"
)
# 3. Perform correlation analysis
correlation_matrix = await calculate_correlation_matrix(
symbols=["AAPL", "MSFT", "GOOGL", "AMZN", "TSLA"],
start_date="2023-01-01",
end_date="2024-01-01"
)
# 4. Find uncorrelated assets for diversification
uncorrelated = await select_uncorrelated_assets(
symbols=correlation_matrix["symbols"],
num_assets=5,
method="lowest_correlation",
start_date="2023-01-01",
end_date="2024-01-01"
)
# 5. Optimize portfolio with advanced algorithm
optimized_portfolio = await sparse_optimization(
portfolio_symbols=uncorrelated["selected_assets"]["symbols"],
benchmark_symbol="SPY",
start_date="2023-01-01",
end_date="2024-01-01",
max_weight=0.15,
lambda_param=0.01
)
Statistical Analysis Workflow
# Cointegration analysis for pairs trading
cointegration_result = await test_cointegration(
symbol1="KO",
symbol2="PEP",
start_date="2023-01-01",
end_date="2024-01-01",
trend="c"
)
if cointegration_result["is_cointegrated"]:
print(f"✅ Cointegration detected (p-value: {cointegration_result['cointegration_pvalue']:.4f})")
# Analyze mean reversion opportunities
mean_reversion = await analyze_mean_reversion(
symbols=["KO", "PEP"],
start_date="2023-01-01",
end_date="2024-01-01",
lookback_period=20
)
Project and Backtest Management
# Create new algorithmic trading project
project = await create_project(
name="Mean_Reversion_Strategy_v2",
language="Py"
)
# Upload algorithm code
await create_file(
project_id=project["project"]["projectId"],
name="main.py",
content=algorithm_code
)
# Run backtest
backtest = await create_backtest(
project_id=project["project"]["projectId"],
compile_id="latest",
backtest_name="Mean_Reversion_Test_Run",
parameters={"lookback_period": 20, "threshold": 2.0}
)
# Analyze results
results = await read_backtest(
project_id=project["project"]["projectId"],
backtest_id=backtest["backtest"]["backtestId"]
)
📖 Comprehensive API Reference
🔐 Authentication Tools
| Tool | Description | Key Parameters |
|---|---|---|
configure_quantconnect_auth |
Set up API credentials | user_id, api_token, organization_id |
validate_quantconnect_auth |
Test credential validity | - |
get_auth_status |
Check authentication status | - |
test_quantconnect_api |
Test API connectivity | endpoint, method |
clear_quantconnect_auth |
Clear stored credentials | - |
📊 Project Management Tools
| Tool | Description | Key Parameters |
|---|---|---|
create_project |
Create new QuantConnect project | name, language, organization_id |
read_project |
Get project details or list all | project_id (optional) |
update_project |
Update project name/description | project_id, name, description |
📁 File Management Tools
| Tool | Description | Key Parameters |
|---|---|---|
create_file |
Create file in project | project_id, name, content |
read_file |
Read file(s) from project | project_id, name (optional) |
update_file_content |
Update file content | project_id, name, content |
update_file_name |
Rename file in project | project_id, old_file_name, new_name |
🧪 QuantBook Research Tools
| Tool | Description | Key Parameters |
|---|---|---|
initialize_quantbook |
Create new research instance | instance_name, organization_id, token |
list_quantbook_instances |
View all active instances | - |
get_quantbook_info |
Get instance details | instance_name |
remove_quantbook_instance |
Clean up instance | instance_name |
📈 Data Retrieval Tools
| Tool | Description | Key Parameters |
|---|---|---|
add_equity |
Add single equity security | ticker, resolution, instance_name |
add_multiple_equities |
Add multiple securities | tickers, resolution, instance_name |
get_history |
Get historical price data | symbols, start_date, end_date, resolution |
add_alternative_data |
Subscribe to alt data | data_type, symbol, instance_name |
get_alternative_data_history |
Get alt data history | data_type, symbols, start_date, end_date |
🔬 Statistical Analysis Tools
| Tool | Description | Key Parameters |
|---|---|---|
perform_pca_analysis |
Principal Component Analysis | symbols, start_date, end_date, n_components |
test_cointegration |
Engle-Granger cointegration test | symbol1, symbol2, start_date, end_date |
analyze_mean_reversion |
Mean reversion analysis | symbols, start_date, end_date, lookback_period |
calculate_correlation_matrix |
Asset correlation analysis | symbols, start_date, end_date |
💰 Portfolio Optimization Tools
| Tool | Description | Key Parameters |
|---|---|---|
sparse_optimization |
Advanced sparse optimization | portfolio_symbols, benchmark_symbol, optimization params |
calculate_portfolio_performance |
Performance metrics | symbols, weights, start_date, end_date |
optimize_equal_weight_portfolio |
Equal-weight optimization | symbols, start_date, end_date, rebalance_frequency |
🌐 Universe Selection Tools
| Tool | Description | Key Parameters |
|---|---|---|
get_etf_constituents |
Get ETF holdings | etf_ticker, date, instance_name |
add_etf_universe_securities |
Add all ETF constituents | etf_ticker, date, resolution |
select_uncorrelated_assets |
Find uncorrelated assets | symbols, num_assets, method |
screen_assets_by_criteria |
Multi-criteria screening | symbols, min_return, max_volatility, etc. |
🔥 Backtest Management Tools
| Tool | Description | Key Parameters |
|---|---|---|
create_backtest |
Create new backtest | project_id, compile_id, backtest_name |
read_backtest |
Get backtest results | project_id, backtest_id, chart |
read_backtest_chart |
Get chart data | project_id, backtest_id, name |
read_backtest_orders |
Get order history | project_id, backtest_id, start, end |
read_backtest_insights |
Get insights data | project_id, backtest_id, start, end |
🏗️ Architecture
quantconnect-mcp/
├── 🎛️ main.py # Server entry point & configuration
├── 📊 src/
│ ├── 🖥️ server.py # FastMCP server core
│ ├── 🔧 tools/ # Tool implementations
│ │ ├── 🔐 auth_tools.py # Authentication management
│ │ ├── 📁 project_tools.py # Project CRUD operations
│ │ ├── 📄 file_tools.py # File management
│ │ ├── 🧪 quantbook_tools.py # Research environment
│ │ ├── 📈 data_tools.py # Data retrieval
│ │ ├── 🔬 analysis_tools.py # Statistical analysis
│ │ ├── 💰 portfolio_tools.py # Portfolio optimization
│ │ ├── 🌐 universe_tools.py # Universe selection
│ │ └── 📊 backtest_tools.py # Backtest management
│ ├── 🔐 auth/ # Authentication system
│ │ ├── __init__.py
│ │ └── quantconnect_auth.py # Secure API authentication
│ └── 📊 resources/ # System resources
│ ├── __init__.py
│ └── system_resources.py # Server monitoring
├── 🧪 tests/ # Comprehensive test suite
│ ├── test_auth.py
│ ├── test_server.py
│ └── __init__.py
├── 📋 pyproject.toml # Project configuration
└── 📖 README.md # This file
Core Design Principles
- 🏛️ Modular Architecture: Each tool category is cleanly separated for maintainability
- 🔒 Security First: SHA-256 authenticated API with secure credential management
- ⚡ Async Performance: Non-blocking operations for maximum throughput
- 🧪 Type Safety: Full type annotations with mypy verification
- 🔧 Extensible: Plugin-based architecture for easy feature additions
🔧 Advanced Configuration
Transport Options
# STDIO (default) - Best for MCP clients
python main.py
# HTTP Server - Best for web integrations
MCP_TRANSPORT=streamable-http MCP_HOST=0.0.0.0 MCP_PORT=8000 python main.py
# Custom path for HTTP
MCP_PATH=/api/v1/mcp python main.py
Environment Variables
| Variable | Description | Default | Example |
|---|---|---|---|
MCP_TRANSPORT |
Transport method | stdio |
streamable-http |
MCP_HOST |
Server host | 127.0.0.1 |
0.0.0.0 |
MCP_PORT |
Server port | 8000 |
3000 |
MCP_PATH |
HTTP endpoint path | /mcp |
/api/v1/mcp |
LOG_LEVEL |
Logging verbosity | INFO |
DEBUG |
System Resources
Monitor server performance and status:
# System information
system_info = await get_resource("resource://system/info")
# Server status and active instances
server_status = await get_resource("resource://quantconnect/server/status")
# Available tools summary
tools_summary = await get_resource("resource://quantconnect/tools/summary")
# Performance metrics
performance = await get_resource("resource://quantconnect/performance/metrics")
# Top processes by CPU usage
top_processes = await get_resource("resource://system/processes/10")
🧪 Testing
Run the Test Suite
# Run all tests
pytest tests/ -v
# Run with coverage
pytest tests/ --cov=src --cov-report=html
# Run specific test category
pytest tests/test_auth.py -v
# Run tests in parallel
pytest tests/ -n auto
Manual Testing
# Test authentication
python -c "
import asyncio
from src.auth import validate_authentication
print(asyncio.run(validate_authentication()))
"
# Test server startup
python main.py --help
🤝 Contributing
We welcome contributions! This project follows the highest Python development standards:
Development Setup
# Fork and clone the repository
git clone https://github.com/your-username/quantconnect-mcp
cd quantconnect-mcp
# Install development dependencies
uv sync --dev
# Install pre-commit hooks
pre-commit install
Code Quality Standards
- ✅ Type Hints: All functions must have complete type annotations
- ✅ Documentation: Comprehensive docstrings for all public functions
- ✅ Testing: Minimum 90% test coverage required
- ✅ Formatting: Black code formatting enforced
- ✅ Linting: Ruff linting with zero warnings
- ✅ Type Checking: mypy verification required
Development Workflow
# Create feature branch
git checkout -b feature/amazing-new-feature
# Make changes and run quality checks
ruff check src/
black src/ tests/
mypy src/
# Run tests
pytest tests/ --cov=src
# Commit with conventional commits
git commit -m "feat: add amazing new feature"
# Push and create pull request
git push origin feature/amazing-new-feature
Pull Request Guidelines
- 📝 Clear Description: Explain what and why, not just how
- 🧪 Test Coverage: Include tests for all new functionality
- 📖 Documentation: Update README and docstrings as needed
- 🔍 Code Review: Address all review feedback
- ✅ CI Passing: All automated checks must pass
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
<div align="center">
Built with ❤️ for the algorithmic trading community
⭐ Star this repo • 🐛 Report issues • 💡 Request features
</div>
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。