Quick Data for Windows MCP

Quick Data for Windows MCP

A Windows-optimized server providing universal data analytics for JSON and CSV files through over 32 tools including schema discovery and interactive visualizations. It is specifically designed for seamless integration with Claude Desktop on Windows.

Category
访问服务器

README

Quick Data for Windows MCP

Windows-optimized fork of disler/quick-data-mcp for Claude Desktop

Universal data analytics capabilities for JSON/CSV files - now working seamlessly on Windows!

Python 3.9+ Windows Claude Desktop Original Project

🚀 What This Does

This is a Windows-optimized fork of the excellent quick-data-mcp project by @disler.

The original project provides powerful MCP server capabilities for data analytics, and this fork specifically addresses Windows compatibility issues and Claude Desktop integration challenges.

**This is my first ever try at this. Please feel free to give suggestions and or criticisms. I loved the quick data mcp for claude code. There was nothing available like it for claude desktop so with the help of claude code we now have it.

Key Improvements Over Original:

  • Windows Path Handling - Proper Windows file path support
  • Claude Desktop Ready - Pre-configured batch launchers and setup
  • Dependency Management - Automated installation scripts
  • Troubleshooting - Complete guides for common Windows issues

✨ Key Features

  • Universal Data Support - Works with any CSV/JSON file structure
  • Windows Path Optimization - Handles Windows file paths correctly
  • Claude Desktop Integration - Pre-configured for seamless setup
  • Automatic Schema Discovery - Analyzes your data and suggests analyses
  • 32+ Analytics Tools - From basic stats to advanced ML features
  • Interactive Visualizations - Create charts with Plotly
  • Memory Management - Optimized for large datasets

🏁 Quick Start for Windows

Prerequisites

Installation

  1. Download or clone this repository:

    git clone https://github.com/Beaulewis1977/quick-data-for-windows-mcp.git
    cd quick-data-for-windows-mcp
    
  2. Install dependencies:

    install_dependencies.bat
    
  3. Test the server:

    test_server.bat
    
  4. Configure Claude Desktop:

    Copy the fixed configuration to Claude Desktop:

    copy claude_desktop_config_fixed.json "%APPDATA%\Claude\claude_desktop_config.json"
    

    IMPORTANT: Edit the config file and update the cwd path to your actual installation directory.

  5. Restart Claude Desktop

🚨 Having Issues?

If you see ModuleNotFoundError: No module named 'mcp', check the TROUBLESHOOTING.md guide.

💻 Usage in Claude Desktop

Once configured, start with this slash command in Claude Desktop:

/quick-data-windows

Loading Your Data

Load my sales data: C:\Users\YourName\Documents\sales_data.csv as "sales"

Basic Analysis

Show me correlations in the sales dataset
Create a bar chart of sales by region
Analyze the distribution of revenue column

Advanced Analytics

Validate data quality for sales dataset
Compare sales dataset with marketing dataset
Generate dashboard with revenue trends and regional breakdown

🔧 Available Tools

Dataset Management

  • load_dataset - Load CSV/JSON files with automatic schema discovery
  • list_loaded_datasets - View all datasets in memory
  • get_dataset_info - Get detailed dataset information
  • clear_dataset / clear_all_datasets - Memory management

Core Analytics

  • segment_by_column - Analyze categorical data segments
  • find_correlations - Discover relationships between variables
  • analyze_distributions - Statistical distribution analysis
  • detect_outliers - Identify data anomalies
  • suggest_analysis - AI-powered analysis recommendations

Visualization

  • create_chart - Generate interactive charts (bar, scatter, line, histogram)
  • generate_dashboard - Multi-chart dashboards

Advanced Analytics

  • validate_data_quality - Comprehensive data quality scoring
  • compare_datasets - Multi-dataset comparison analysis
  • merge_datasets - Join datasets with flexible strategies
  • calculate_feature_importance - ML feature importance analysis
  • export_insights - Export results in multiple formats

📂 Supported File Formats

CSV Files

  • Standard CSV with headers
  • Custom delimiters automatically detected
  • UTF-8 encoding support
  • Large file handling with sampling options

JSON Files

  • Flat JSON structures
  • Nested JSON (automatically flattened)
  • JSON Lines format
  • Array of objects format

🛠️ Configuration

Manual Configuration

If the automatic setup doesn't work, manually edit your Claude Desktop config:

Location: %APPDATA%\Claude\claude_desktop_config.json

{
  "mcpServers": {
    "quick-data-windows": {
      "command": "python",
      "args": [
        "C:\\path\\to\\your\\quick-data-for-windows-mcp\\main.py"
      ],
      "cwd": "C:\\path\\to\\your\\quick-data-for-windows-mcp",
      "env": {
        "LOG_LEVEL": "INFO",
        "PYTHONPATH": "C:\\path\\to\\your\\quick-data-for-windows-mcp\\src"
      }
    }
  }
}

Alternative: Using UV Package Manager

If you prefer UV (recommended for Python dependency management):

{
  "mcpServers": {
    "quick-data-windows": {
      "command": "uv",
      "args": [
        "--directory",
        "C:\\path\\to\\your\\quick-data-for-windows-mcp",
        "run",
        "python",
        "main.py"
      ]
    }
  }
}

🧪 Testing the Server

Test the server standalone (before Claude Desktop integration):

python main.py

Expected output:

Quick Data for Windows MCP v1.0.0
Server running on stdio...

📊 Example Workflows

Sales Data Analysis

1. Load sales_data.csv as "sales"
2. Show correlations in sales dataset
3. Create bar chart of sales by product_category 
4. Detect outliers in revenue column
5. Generate dashboard with top products and regional trends

Data Quality Assessment

1. Load customer_data.csv as "customers"
2. Validate data quality for customers dataset
3. Analyze distributions for age column
4. Segment by customer_type column

🔍 Troubleshooting

Common Issues

"Module not found" errors:

  • Ensure Python is in your PATH
  • Run pip install -r requirements.txt manually
  • Check that PYTHONPATH is set correctly in config

"File not found" errors:

  • Use full Windows paths: C:\Users\...
  • Avoid relative paths like .\data\file.csv
  • Check file permissions

Claude Desktop not finding server:

  • Restart Claude Desktop after config changes
  • Check config file syntax with JSON validator
  • Verify file paths are correct (no typos)

Getting Help

  1. Check that Python 3.9+ is installed: python --version
  2. Verify dependencies: pip list | findstr pandas
  3. Test server manually: python main.py
  4. Check Claude Desktop logs for errors

🤝 Contributing

This is a community-driven Windows adaptation of the original quick-data-mcp project. Contributions welcome!

Development Setup

# Clone and setup
git clone https://github.com/Beaulewis1977/quick-data-for-windows-mcp.git
cd quick-data-for-windows-mcp

# Install development dependencies
pip install -r requirements.txt
pip install pytest black ruff

# Run tests (when implemented)
pytest tests/

📝 License

MIT License - see LICENSE file for details.

🙏 Acknowledgments

This project is a Windows-optimized fork of the original quick-data-mcp by @disler.

Original Project Credits

  • Original Author: @disler
  • Original Repository: disler/quick-data-mcp
  • Original Purpose: MCP server for data analytics with Claude Code
  • License: MIT (maintained in this fork)

Windows Fork Contributions

  • Windows Compatibility: @Beaulewis1977
  • Claude Desktop Integration: Community-driven improvements
  • Troubleshooting & Documentation: Enhanced for Windows users

Technology Stack

  • Model Context Protocol: Anthropic
  • Data Processing: pandas, numpy, plotly, scikit-learn
  • Platform: Optimized for Windows + Claude Desktop

⭐ Please star both repositories:

Special thanks to @disler for creating the foundational work that made this Windows adaptation possible!

🔗 Links


**This is my first ever try at this. Please feel free to give suggestions and or criticisms. I loved the quick data mcp for claude code. There was nothing available like it for claude desktop so with the help of claude code we now have it.

Ready to analyze your data with AI? Load a CSV and start exploring! 🚀

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选