Quick-start Auto MCP
A tool that helps users easily register Anthropic's Model Context Protocol in Claude Desktop and Cursor, providing ready-made MCP tools for RAG, web search, and Dify integrations.
README
Quick-start Auto MCP : All in one Claude Desktop and Cursor
Introduction
Quick-start Auto MCP is a tool that helps you easily and quickly register Anthropic's Model Context Protocol (MCP) in Claude Desktop and Cursor.
Key advantages:
- Quick Setup: Add MCP functionality to Claude Desktop and Cursor simply by running a tool and copying/pasting the generated JSON file.
- Various Tools Provided: We continuously update useful MCP tools. Stay up to date with your personalized toolkit by starring and following us. :)
Table of Contents
- Features
- Project Structure
- Requirements
- Installation
- Configuration
- Usage
- Troubleshooting
- License
- Contributing
- Contact
- Author
Features
- RAG (Retrieval Augmented Generation) - Keyword, semantic, and hybrid search functionality for PDF documents
- Dify External Knowledge API - Document search functionality via Dify's external knowledge API
- Dify Workflow - Execute and retrieve results from Dify Workflow
- Web Search - Real-time web search using Tavily API
- Automatic JSON Generation - Automatically generate MCP JSON files needed for Claude Desktop and Cursor
Project Structure
.
├── case1 # RAG example
├── case2 # Dify External Knowledge API example
├── case3 # Dify Workflow example
├── case4 # Web Search example
├── data # Example data files
├── docs # Documentation folder
│ ├── case1.md # case1 description 🚨 Includes tips for optimized tool invocation
│ ├── case2.md # case2 description
│ ├── case3.md # case3 description
│ ├── case4.md # case4 description
│ └── installation.md # Installation guide
├── .env.example # .env example format
├── pyproject.toml # Project settings
├── requirements.txt # Required packages list
└── uv.lock # uv.lock
Requirements
- Python >= 3.11
- Claude Desktop or Cursor (MCP supporting version)
- uv (recommended) or pip
Installation
1. Clone the repository
git clone https://github.com/teddynote-lab/mcp.git
cd mcp
2. Set up virtual environment
Using uv (recommended)
# macOS/Linux
uv venv
uv pip install -r requirements.txt
# Windows
uv venv
uv pip install -r requirements_windows.txt
Using pip
python -m venv .venv
# Windows
.venv\Scripts\activate
pip install -r requirements_windows.txt
# macOS/Linux
source .venv/bin/activate
pip install -r requirements.txt
3. Preparing the PDF File
Plese prepare a PDF file required for RAG in the ./data directory.
Configuration
In order to execute each case, a .env file is required.
Please specify the necessary environment variables in the .env.example file located in the root directory, and rename it to .env.
sites for configuring required environment variables for each case
- https://platform.openai.com/api-keys
- https://dify.ai/
- https://app.tavily.com/home
Usage
1. Generate JSON File
Run the following command in each case directory to generate the necessary JSON file:
# Activate virtual environment
# Windows
.venv\Scripts\activate
# macOS/Linux
source .venv/bin/activate
# Navigate to example directory
cd case1
# Generate JSON file
python auto_mcp_json.py
2. Register MCP in Claude Desktop/Cursor
- Launch Claude Desktop or Cursor
- Open MCP settings menu
- Copy and paste the generated JSON content
- Save and
restart(If you're using Windows, we recommend fully closing the process via Task Manager and then restarting the application.)
Note: When you run Claude Desktop or Cursor, the MCP server will automatically run with it. When you close the software, the MCP server will also terminate.
Troubleshooting
Common issues and solutions:
- MCP Server Connection Failure: Check if the service is running properly and if there are no port conflicts. In particular, when applying case2, you must also run
dify_ek_server.py. - API Key Errors: Verify that environment variables are set correctly.
- Virtual Environment Issues: Ensure Python version is 3.11 or higher.
License
Contributing
Contributions are always welcome! Please participate in the project through issue registration or pull requests. :)
Contact
If you have questions or need help, please register an issue or contact: dev@brain-crew.com
Author
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。