Qwen3-VL Video Understanding MCP Server
Enables AI agents to analyze, summarize, and extract text from videos and images using the Qwen3-VL-8B-Instruct model deployed on Blaxel. It supports media analysis via URL, including video Q\&A and speech transcription capabilities.
README
Qwen3-VL Video Understanding MCP Server (Blaxel)
An MCP (Model Context Protocol) server that enables Claude and other AI agents to analyze videos and images using Qwen3-VL-8B-Instruct deployed on Blaxel.
Features
- Video Analysis: Analyze videos via URL with custom prompts
- Image Analysis: Analyze images via URL
- Video Summarization: Generate summaries in different styles
- Text Extraction: Extract on-screen text and transcribe speech
- Video Q&A: Ask specific questions about video content
- H100 GPUs: Fast inference on NVIDIA H100 GPUs via Blaxel
Architecture
Claude/Agent → MCP Server → Blaxel API → Qwen3-VL (H100 GPUs)
Prerequisites
- Blaxel Account: Sign up at blaxel.ai
- Blaxel CLI: Install the Blaxel CLI
- ffmpeg: Required for video frame extraction
- Python 3.10+
Quick Start
1. Deploy the Model to Blaxel
cat << 'EOF' | blaxel apply -f -
apiVersion: blaxel.ai/v1alpha1
kind: Model
metadata:
name: qwen-qwen3-vl-8b-instruct
displayName: Qwen/Qwen3-VL-8B-Instruct
spec:
enabled: true
policies: []
flavors:
- name: nvidia-h100/x4
type: gpu
runtime:
model: Qwen/Qwen3-VL-8B-Instruct
type: hf_private_endpoint
image: ''
args: []
endpointName: qwenqwen3-vl-8b-instruct-nvidia-h100
organization: adamanz
integrationConnections:
- huggingface-4s2m2h
EOF
Or use the provided config:
blaxel apply -f blaxel-model.yaml
2. Get Your API Key
blaxel auth token
3. Install the MCP Server
cd qwen-video-blaxel-mcp
pip install -e .
Or with uv:
uv pip install -e .
4. Configure Environment
cp .env.example .env
# Edit .env with your Blaxel API key
5. Add to Claude Desktop
Add to ~/Library/Application Support/Claude/claude_desktop_config.json:
{
"mcpServers": {
"qwen3-video-blaxel": {
"command": "uv",
"args": [
"--directory",
"/path/to/qwen-video-blaxel-mcp",
"run",
"server.py"
],
"env": {
"BLAXEL_API_KEY": "your-blaxel-api-key",
"BLAXEL_MODEL": "qwen-qwen3-vl-8b-instruct"
}
}
}
}
6. Restart Claude Desktop
The qwen3-video-blaxel tools should now be available.
Available Tools
analyze_video
Analyze a video with a custom prompt.
analyze_video(
video_url="https://example.com/video.mp4",
question="What happens in this video?",
max_frames=8
)
analyze_image
Analyze an image with a custom prompt.
analyze_image(
image_url="https://example.com/image.jpg",
question="Describe this image"
)
summarize_video
Generate a video summary.
summarize_video(
video_url="https://example.com/video.mp4",
style="detailed" # brief, standard, or detailed
)
video_qa
Ask specific questions about a video.
video_qa(
video_url="https://example.com/video.mp4",
question="How many people appear?"
)
extract_video_text
Extract text and transcribe speech.
extract_video_text(
video_url="https://example.com/presentation.mp4"
)
check_configuration
Check the Blaxel API configuration.
list_capabilities
List all server capabilities.
Configuration
| Environment Variable | Description | Default |
|---|---|---|
BLAXEL_API_KEY |
Your Blaxel API key | Required |
BLAXEL_API_URL |
Blaxel API URL | https://api.blaxel.ai/v1 |
BLAXEL_MODEL |
Model name | qwen-qwen3-vl-8b-instruct |
Requirements
- ffmpeg: Required for video frame extraction
# macOS brew install ffmpeg # Ubuntu/Debian apt install ffmpeg
Supported Formats
Video: mp4, webm, mov, avi
Image: jpg, jpeg, png, gif, webp
Comparison: Modal vs Blaxel
| Feature | Modal | Blaxel |
|---|---|---|
| Model | Qwen2.5-VL-7B | Qwen3-VL-8B |
| GPU | A100 | H100 |
| Pricing | Pay-per-second | Subscription |
| Cold Start | ~30-60s | Faster |
| Setup | Deploy code | Apply YAML |
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。