RAG Context MCP Server
A lightweight server that provides persistent memory and context management for AI assistants using local vector storage and database, enabling efficient storage and retrieval of contextual information through semantic search and indexed retrieval.
README
RAG Context MCP Server
A lightweight Model Context Protocol (MCP) server that provides persistent memory and context management using local vector storage and database. This server enables AI assistants to store and retrieve contextual information efficiently using both semantic search and indexed retrieval.
Features
- Local Vector Storage: Uses Vectra for efficient vector similarity search
- Persistent Memory: SQLite database for reliable data persistence
- Semantic Search: Automatic text embedding using Xenova/all-MiniLM-L6-v2 model
- Hybrid Retrieval: Combines semantic search with indexed database queries
- Simple API: Just two tools -
setContextandgetContext - Lightweight: Minimal dependencies, runs entirely locally
- Privacy-First: All data stored locally, no external API calls
Installation
Using npm
npm install -g @rag-context/mcp-server
Using npx (no installation required)
npx @rag-context/mcp-server
Configuration
For Claude Desktop
Add the following to your Claude Desktop configuration file:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
{
"mcpServers": {
"rag-context": {
"command": "npx",
"args": ["@rag-context/mcp-server"],
"env": {
"RAG_CONTEXT_DATA_DIR": "/path/to/your/data/directory"
}
}
}
}
For Cursor
In Cursor settings, add the MCP server:
env RAG_CONTEXT_DATA_DIR=/path/to/your/data/directory npx @rag-context/mcp-server
Environment Variables
RAG_CONTEXT_DATA_DIR: Directory where the database and vector index will be stored (default:~/.rag-context-mcp)
Usage
The server exposes two main tools:
setContext
Store information in memory with automatic vectorization:
{
"tool": "setContext",
"arguments": {
"key": "user_preferences",
"content": "The user prefers dark mode and uses VS Code as their primary editor",
"metadata": {
"category": "preferences",
"timestamp": "2024-01-15"
}
}
}
getContext
Retrieve relevant context using semantic search:
{
"tool": "getContext",
"arguments": {
"query": "What are the user's editor preferences?",
"limit": 5,
"threshold": 0.7
}
}
System Prompt for AI Assistants
To effectively use this MCP server, add the following to your AI assistant's system prompt:
## Memory and Context Management
You have access to a persistent memory system through the RAG Context MCP server. This allows you to store and retrieve information across conversations.
### When to Store Context
Store information when:
- Users share preferences, settings, or personal information
- Important project details or configurations are discussed
- Key decisions or agreements are made
- Useful code snippets or solutions are created
- Learning about user's workflow, tools, or environment
### How to Store Context
Use the `setContext` tool with:
- A descriptive, unique key (e.g., "project_setup_nextjs", "user_pref_editor")
- Clear, concise content that captures the essential information
- Relevant metadata (category, project, date, etc.)
Example:
```json
{
"key": "project_api_structure",
"content": "The project uses a REST API with /api/v1 prefix. Authentication is handled via JWT tokens in the Authorization header. Main endpoints: /users, /posts, /comments",
"metadata": {
"project": "blog-platform",
"type": "architecture",
"date": "2024-01-15"
}
}
```
When to Retrieve Context
Retrieve context when:
- Starting a new conversation about a previously discussed topic
- Users reference past discussions or decisions
- You need to recall specific technical details or preferences
- Building upon previous work or solutions
How to Retrieve Context
Use the getContext tool with:
- A natural language query describing what you're looking for
- Appropriate limit (usually 3-5 results)
- Threshold of 0.7 for balanced precision/recall
Example:
{
"query": "API authentication setup for the blog project",
"limit": 3,
"threshold": 0.7
}
Best Practices
- Be Selective: Store important, reusable information, not every detail
- Use Clear Keys: Make keys descriptive and searchable
- Add Metadata: Include project names, categories, and dates
- Update Existing: Use the same key to update information rather than creating duplicates
- Query Naturally: Write queries as you would ask a colleague
Remember: This memory persists across all conversations, making you more helpful over time by remembering important context and user preferences.
## Architecture
The server uses a hybrid approach for optimal performance:
1. **SQLite Database**: Stores the actual content with metadata, provides fast key-based lookups
2. **Vector Index**: Enables semantic search using embeddings
3. **Local Embeddings**: Uses Xenova/transformers for privacy-preserving, local text embedding
## Data Storage
All data is stored locally in the specified data directory:
<RAG_CONTEXT_DATA_DIR>/ ├── memories.db # SQLite database └── vectors.index # Vectra vector index
## Development
### Building from Source
```bash
# Clone the repository
git clone https://github.com/yourusername/rag-context-mcp.git
cd rag-context-mcp
# Install dependencies
npm install
# Build the project
npm run build
# Run in development mode
npm run dev
Running Tests
npm test
Privacy and Security
- All data is stored locally on your machine
- No external API calls for embeddings (uses local model)
- No telemetry or data collection
- You control where data is stored via
RAG_CONTEXT_DATA_DIR
Troubleshooting
Common Issues
-
"VectorStore not initialized" error
- Ensure the data directory exists and has write permissions
- Check that the
RAG_CONTEXT_DATA_DIRpath is valid
-
Slow first startup
- The embedding model is downloaded on first use (~30MB)
- Subsequent starts will be much faster
-
High memory usage
- The embedding model requires ~200MB RAM
- Consider limiting the number of stored contexts
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
License
MIT License - see LICENSE file for details
Acknowledgments
Inspired by the MCP memory server example from Anthropic, but enhanced with:
- Local vector storage for better retrieval
- SQLite for reliable persistence
- Hybrid search capabilities
- Privacy-focused design
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。