RAG GroundX MCP Server

RAG GroundX MCP Server

Enables advanced semantic search and document management by integrating the GroundX API with Claude Desktop and GitHub Copilot. It supports local file uploads, website crawling, and Google Drive synchronization for RAG workflows.

Category
访问服务器

README

RAG GroundX MCP Server

An MCP (Model Context Protocol) server for interacting with the GroundX API from eyelevel.ai, featuring a local proxy to connect to the remote Google Drive MCP Server URL of your choice (for example, Zapier). This integration enables seamless integration of GroundX capabilities into your GitHub Copilot and Claude Desktop workflows to perform advanced parsing and semantic search on your Google Drive or local documents.

🌟 Key Features

  • MCP Server for GroundX API with stdio transport
  • Google Drive Integration through MCP Proxy
  • Dual Document Management:
    • Upload local files directly to GroundX
    • Or sync Google Drive documents with GroundX
  • Advanced Semantic Search across all your documents
  • Seamless Integration with:
    • GitHub Copilot
    • Claude Desktop

🚀 Quick Start

Prerequisites

  • Windows with WSL 2 installed (Ubuntu 22.04 recommended)
  • Install uv if you haven't already- Python 3.11 or higher
  • A GroundX API key (free tier available)
  • (Optional) A Google Drive MCP Server URL - for example using Zapier (free tier available) - and a Google account dedicated to this Google Drive integration.

Installation Steps

  1. Clone the repository:

    git clone https://github.com/Geoffrey-42/rag-groundx-mcp-server.git
    cd rag-groundx-mcp-server
    
  2. Set up the virtual environment:

    # Create and activate virtual environment
    uv venv
    
    # Activate the virtual environment
    source .venv/bin/activate
    
  3. Install dependencies:

    uv pip install -r requirements.txt
    
  4. (Optional) Configure your environment within a .env file:

    • Create a .env file in the root directory:
      touch .env
      
    • Edit the .env file and add your credentials:
      # Required: Get your API key from https://dashboard.eyelevel.ai/home
      GROUNDX_API_KEY=your_groundx_api_key_here
      
      # Optional: Only needed for Google Drive integration
      # GOOGLE_DRIVE_SERVER_URL=your_google_drive_mcp_server_url
      
    • Note: Can be skipped if you configure the environment within the claude_desktop_config.json file (see below).

🔌 Claude Desktop Configuration

To use this server with Claude Desktop and GitHub Copilot:

  1. Configure the claude_desktop_config.json file:

    • Location: %APPDATA%\Claude\claude_desktop_config.json (Windows)
    • Add the following MCP servers to the configuration and fill the placeholders with your values to configure the servers:
    {
      "mcpServers": {
        "Groundx_RAG_MCP_Server": {
          "command": "wsl",
          "args": [
            "-d", "Ubuntu-22.04",
            "-e", "bash", "-c",
            "export GROUNDX_API_KEY=<your_groundx_api_key> && export PATH=$HOME/.local/bin:$PATH && cd /home/<your-name>/<project-folder>/rag-groundx-mcp-server/src && uv run Groundx_RAG_MCP_Server.py"
          ],
          "env": {
            "GROUNDX_API_KEY": "<your_groundx_api_key>"
          }
        },
        "GoogleDriveProxyServer": {
          "command": "wsl",
          "args": [
            "-d", "Ubuntu-22.04",
            "-e", "bash", "-c",
            "export GOOGLE_DRIVE_SERVER_URL=<your_google_drive_mcp_server_url> && export PATH=$HOME/.local/bin:$PATH && cd /home/<your-name>/<project-folder>/rag-groundx-mcp-server/src && uv run Google_Drive_Proxy_Server.py"
          ],
          "env": {
            "GOOGLE_DRIVE_SERVER_URL": "<your_google_drive_mcp_server_url>"
          }
        }
      }
    }
    

Troubleshooting

  • You can either use the environment variables or the command line arguments to pass the API key and Google Drive MCP Server URL. In theory, you can use the environment variables parameters "env" for both servers, but it is recommended to use the command line arguments "args" to avoid issues in the WSL environment. Hence here, both methods are shown.

  • You can also use the .env file to pass the API key and Google Drive MCP Server URL to the servers. Write GOOGLE_DRIVE_SERVER_URL = <your_google_drive_mcp_server_url> and GROUNDX_API_KEY = <your_groundx_api_key> in the .env file.

  • You must also specify the path to the root directory of the project (for example, /home/<your-name>/<project-folder>/rag-groundx-mcp-server/src) in the command line arguments "args".

  • You may also use fastmcp.cli.claude to configure the MCP servers in Claude Desktop. See https://gofastmcp.com/python-sdk/fastmcp-cli-claude#fastmcp-cli-claude for more information.

  • Anthropic has also introduced "Desktop Extensions" (.dxt files) which simplify the installation and management of local MCP servers, allowing for one-click setup.

  1. Restart Claude Desktop and VS Code (File->Quit) to apply changes

Once configured for Claude Desktop, the MCP tools will also be available in VS Code through GitHub Copilot. After restarting Claude Desktop and VS Code, the VS Code agent or Claude Desktop will automatically detect and use these tools when relevant. Don't forget to enable Agent mode in VS Code and to enable the MCP tools in Claude Desktop.

🤖 GitHub Copilot Integration

To use this server with GitHub Copilot:

  1. Enable Agent mode in VS Code
  2. MCP tools will be automatically detected
  3. Interact naturally - the agent will use the appropriate tools as needed

🚀 Quick Start with Claude Desktop

  1. Ensure MCP servers are running via Claude Desktop configuration
  2. Verify the presence of your MCP tools by clicking on the tools logo below the chat input field of Claude Desktop.
  3. Interact naturally - the agent will use the appropriate tools as needed.
  4. You may ask Claude to search for documents in your Google Drive.
  5. You may ask Claude to upload documents from your Google Drive to GroundX.
  6. You may ask Claude to answer a query based on your GroundX documents using the Retrieval tool.

🚀 Quick Start with VS Code Copilot

  1. Ensure MCP servers are running via Claude Desktop configuration.
  2. Open VS Code and enable Agent mode in Copilot.
  3. Verify the presence of your MCP tools by clicking on the tools logo below the chat input field of Copilot.
  4. Interact naturally - the agent will use the appropriate tools as needed.
  5. For uploading local files to groundx: Open this project folder under WSL in VS Code. The agent will then have access to it any documents you may copy to within this folder.
  6. You may ask the agent to search for documents in your Google Drive.
  7. You may ask the agent to upload documents from your Google Drive to GroundX.
  8. You may ask the agent to answer a query based on your GroundX documents using the Retrieval tool.

Example Interaction

When working in VS Code with GitHub Copilot enabled, you can simply describe what you want to do in natural language, and the agent will automatically use the appropriate MCP tools. For example:

  1. General information: "List my groundx buckets and my google drive documents"
  2. Upload local file to groundx: "Upload the file path/to/document.pdf from my local machine to my groundx bucket with id <bucket_id>"
  3. Search for documents: "Find <article_name>.pdf in my <folder_name> folder in google drive and make it ready to be ingested in my groundx bucket with id <bucket_id>."
  4. Upload documents: "Add this document from my google drive to my groundx bucket with id <bucket_id>"
  5. Retrieve knowledge: Ask the agent to answer a query after it has retrieved information from your groundx documents.

The agent will handle all the tool invocations and API calls automatically based on your natural language requests.

📚 Available Tools

Main Tools

  • Retrieval_from_Groundx: Performs semantic search across your documents
  • upload_local_file_to_Groundx: Uploads a local file to GroundX
  • upload_remote_file_to_Groundx: Uploads a file from a public URL to GroundX
  • crawl_website_to_Groundx: Crawls and uploads a website to GroundX
  • google_drive_retrieve_files_from_google_drive: Retrieves details of a specific document from Google Drive. Available only if you have configured a Google Drive MCP Server URL (for example, with Zapier), and copied it in the .env file as GOOGLE_DRIVE_SERVER_URL or in your claude_desktop_config.json file.
  • Many others

🤝 Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

📞 Support

For questions or issues, please open an issue in the repository.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选