
RAG Information Retriever
An MCP server that implements Retrieval-Augmented Generation to efficiently retrieve and process important information from various sources, providing accurate and contextually relevant responses.
README
RAG Information Retriever
A powerful MCP server that implements Retrieval-Augmented Generation (RAG) to efficiently retrieve and process important information from various sources. This server combines the strengths of retrieval-based and generation-based approaches to provide accurate and contextually relevant information.
Features
-
Intelligent Information Retrieval
- Semantic search capabilities
- Context-aware information extraction
- Relevance scoring and ranking
- Multi-source data integration
-
RAG Implementation
- Document embedding and indexing
- Query understanding and processing
- Context-aware response generation
- Knowledge base integration
-
Advanced Processing
- Text chunking and processing
- Semantic similarity matching
- Context window management
- Response synthesis
Setup
-
Environment Configuration Create a
.env
file with the following variables:OPENAI_API_KEY=your_openai_api_key VECTOR_DB_PATH=path_to_vector_database
-
Dependencies
pip install langchain openai chromadb sentence-transformers
Usage
Basic Information Retrieval
# Example: Simple query
query = "What are the key features of the system?"
# Example: Context-specific query
query = "How does the authentication system work?"
Advanced Retrieval
# Example: Multi-context query
query = {
"question": "What are the system requirements?",
"context": ["installation", "deployment", "configuration"]
}
# Example: Filtered retrieval
query = {
"question": "Show me the API documentation",
"filters": {
"category": "api",
"version": "2.0"
}
}
Architecture
retriever/
├── retrieverServer.py # Main MCP server with RAG implementation
├── embeddings/ # Embedding models and processing
├── database/ # Vector database and storage
└── README.md
How It Works
-
Query Processing
- Input query is received and preprocessed
- Query intent is analyzed
- Relevant context is identified
-
Information Retrieval
- Vector similarity search is performed
- Relevant documents are retrieved
- Context is assembled and ranked
-
Response Generation
- Retrieved information is processed
- Response is generated with context
- Results are formatted and returned
Performance Features
- Efficient vector search
- Caching of frequent queries
- Batch processing capabilities
- Asynchronous operations
Security
- Input sanitization
- Rate limiting
- Access control
- Data encryption
Running the Server
To start the MCP server in development mode:
mcp dev retrieverServer.py
Error Handling
The system provides comprehensive error handling for:
- Invalid queries
- Missing context
- Database connection issues
- API rate limits
- Processing errors
Best Practices
-
Query Formulation
- Be specific in your queries
- Provide relevant context
- Use appropriate filters
-
Context Management
- Keep context windows focused
- Update knowledge base regularly
- Monitor relevance scores
Contributing
Feel free to submit issues and enhancement requests!
Security Notes
- API keys should be kept secure
- Regular security audits
- Data privacy compliance
- Access control implementation
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。