RAG MCP Server
A Model Context Protocol server that exposes Retrieval-Augmented Generation capabilities and a weather tool, allowing clients to interact with document knowledge bases and retrieve weather information.
README
RAG MCP Application
This project combines a Retrieval-Augmented Generation (RAG) system with the Model Context Protocol (MCP) to create a powerful, modular AI application. It features a dedicated MCP server (rag_server.py) that exposes RAG capabilities and a weather tool, and a client UI (client_ui.py) that uses an orchestrator LLM to interact with these tools.
Project Structure
rag-mcp-app/data/: Directory for your PDF documents to be indexed by the RAG system.chroma_db/: Directory where the ChromaDB vector store will be persisted.rag_server.py: The MCP server that hosts the RAG and weather tools.client_ui.py: The client application with a Gradio UI that orchestrates LLM calls and tool usage.ingest.py: A script to load and index your PDF documents into the vector database.requirements.txt: Lists all project dependencies.README.md: This file.
Getting Started
Prerequisites
- Python 3.11+: Ensure you have Python installed.
- Ollama: Install Ollama from ollama.ai and ensure it's running.
- Ollama Model (
qwen3:1.7b): Pull theqwen3:1.7bmodel for the client's orchestrator LLM:ollama pull qwen3:1.7b - Ollama Embedding Model (
nomic-embed-text): If you plan to use Ollama for embeddings (though Gemini is default), pull this model:ollama pull nomic-embed-text - Google API Key: Set your
GOOGLE_API_KEYas an environment variable (e.g., in a.envfile). This is required for Google Gemini embeddings and the Gemini LLM.
Installation
-
Clone the repository (if you haven't already):
git clone <your-repo-url> cd rag-mcp-app(Note: If you are following along with the development process, you would have already created this directory and copied files into it.)
-
Create and Activate a Virtual Environment:
python -m venv venv # On Windows: .\venv\Scripts\activate # On macOS/Linux: # source venv/bin/activate -
Install Dependencies:
uv pip install -r requirements.txt
Data Preparation
-
Populate the
data/directory: Place your PDF documents into therag-mcp-app/data/directory. -
Run the Ingestion Script: This needs to be run before you start the RAG server for the first time, or whenever you add new documents to the
data/directory.python ingest.py
Running the Application
You will need to run two processes: the MCP server and the client UI.
1. Start the MCP Server:
Open a new terminal, activate your virtual environment, and run:
python rag_server.py --llm-provider ollama
# Or to use Gemini for RAG LLM:
# python rag_server.py --llm-provider gemini
This will start the MCP server, making the get_weather and get_rag_response tools available.
2. Start the Client UI:
Open another terminal, activate your virtual environment, and run:
python client_ui.py --mcp-server rag_server.py --model qwen3:1.7b
This command connects the client UI to the MCP server and specifies the orchestrator LLM.
The client UI will launch in your browser. You can then interact with the chatbot, asking questions that might trigger the RAG system or the weather tool.
Example Usage
- Ask a question about your documents: "What is the main topic of the documents?"
- Ask about the weather: "What's the weather like in London?"
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。