RAG Memory MCP

RAG Memory MCP

An advanced MCP server providing RAG-enabled memory through a knowledge graph with vector search capabilities, enabling intelligent information storage, semantic retrieval, and document processing.

Category
访问服务器

README

rag-memory-mcp

npm version npm downloads GitHub license Platforms GitHub last commit

An advanced MCP server for RAG-enabled memory through a knowledge graph with vector search capabilities. This server extends the basic memory concepts with semantic search, document processing, and hybrid retrieval for more intelligent memory management.

Inspired by: Knowledge Graph Memory Server from the Model Context Protocol project.

Note: This server is designed to run locally alongside MCP clients (e.g., Claude Desktop, VS Code) and requires local file system access for database storage.

✨ Key Features

  • 🧠 Knowledge Graph Memory: Persistent entities, relationships, and observations
  • 🔍 Vector Search: Semantic similarity search using sentence transformers
  • 📄 Document Processing: RAG-enabled document chunking and embedding
  • 🔗 Hybrid Search: Combines vector similarity with graph traversal
  • ⚡ SQLite Backend: Fast local storage with sqlite-vec for vector operations
  • 🎯 Entity Extraction: Automatic term extraction from documents

Tools

This server provides comprehensive memory management through the Model Context Protocol (MCP):

📚 Document Management

  • storeDocument: Store documents with metadata for processing
  • chunkDocument: Create text chunks with configurable parameters
  • embedChunks: Generate vector embeddings for semantic search
  • extractTerms: Extract potential entity terms from documents
  • linkEntitiesToDocument: Create explicit entity-document associations
  • deleteDocuments: Remove documents and associated data
  • listDocuments: View all stored documents with metadata

🧠 Knowledge Graph

  • createEntities: Create new entities with observations and types
  • createRelations: Establish relationships between entities
  • addObservations: Add contextual information to existing entities
  • deleteEntities: Remove entities and their relationships
  • deleteRelations: Remove specific relationships
  • deleteObservations: Remove specific observations from entities

🔍 Search & Retrieval

  • hybridSearch: Advanced search combining vector similarity and graph traversal
  • searchNodes: Find entities by name, type, or observation content
  • openNodes: Retrieve specific entities and their relationships
  • readGraph: Get complete knowledge graph structure

📊 Analytics

  • getKnowledgeGraphStats: Comprehensive statistics about the knowledge base

Usage Scenarios

This server is ideal for scenarios requiring intelligent memory and document understanding:

  • Research and Documentation: Store, process, and intelligently retrieve research papers
  • Knowledge Base Construction: Build interconnected knowledge from documents
  • Conversational Memory: Remember context across chat sessions with semantic understanding
  • Content Analysis: Extract and relate concepts from large document collections
  • Intelligent Assistance: Provide contextually aware responses based on stored knowledge

Client Configuration

This section explains how to configure MCP clients to use the rag-memory-mcp server.

Usage with Claude Desktop / Cursor

Add the following configuration to your claude_desktop_config.json (Claude Desktop) or mcp.json (Cursor):

{
  "mcpServers": {
    "rag-memory": {
      "command": "npx",
      "args": ["-y", "rag-memory-mcp"]
    }
  }
}

With specific version:

{
  "mcpServers": {
    "rag-memory": {
      "command": "npx",
      "args": ["-y", "rag-memory-mcp@1.0.0"]
    }
  }
}

With custom database path:

{
  "mcpServers": {
    "rag-memory": {
      "command": "npx",
      "args": ["-y", "rag-memory-mcp"],
      "env": {
        "MEMORY_DB_PATH": "/path/to/custom/memory.db"
      }
    }
  }
}

Usage with VS Code

Add the following configuration to your User Settings (JSON) file or .vscode/mcp.json:

{
  "mcp": {
    "servers": {
      "rag-memory-mcp": {
        "command": "npx",
        "args": ["-y", "rag-memory-mcp"]
      }
    }
  }
}

Core Concepts

Entities

Entities are the primary nodes in the knowledge graph. Each entity has:

  • A unique name (identifier)
  • An entity type (e.g., "PERSON", "CONCEPT", "TECHNOLOGY")
  • A list of observations (contextual information)

Example:

{
  "name": "Machine Learning",
  "entityType": "CONCEPT",
  "observations": [
    "Subset of artificial intelligence",
    "Focuses on learning from data",
    "Used in recommendation systems"
  ]
}

Relations

Relations define directed connections between entities, describing how they interact:

Example:

{
  "from": "React",
  "to": "JavaScript",
  "relationType": "BUILT_WITH"
}

Observations

Observations are discrete pieces of information about entities:

  • Stored as strings
  • Attached to specific entities
  • Can be added or removed independently
  • Should be atomic (one fact per observation)

Documents & Vector Search

Documents are processed through:

  1. Storage: Raw text with metadata
  2. Chunking: Split into manageable pieces
  3. Embedding: Convert to vector representations
  4. Linking: Associate with relevant entities

This enables hybrid search that combines:

  • Vector similarity (semantic matching)
  • Graph traversal (conceptual relationships)

Environment Variables

  • MEMORY_DB_PATH: Path to the SQLite database file (default: memory.db in the server directory)

Development Setup

This section is for developers looking to modify or contribute to the server.

Prerequisites

  • Node.js: Check package.json for version compatibility
  • npm: Used for package management

Installation (Developers)

  1. Clone the repository:
git clone https://github.com/ttommyth/rag-memory-mcp.git
cd rag-memory-mcp
  1. Install dependencies:
npm install

Building

npm run build

Running (Development)

npm run watch  # For development with auto-rebuild

Development Commands

  • Build: npm run build
  • Watch: npm run watch
  • Prepare: npm run prepare

Usage Example

Here's a typical workflow for building and querying a knowledge base:

// 1. Store a document
await storeDocument({
  id: "ml_intro",
  content: "Machine learning is a subset of AI...",
  metadata: { type: "educational", topic: "ML" }
});

// 2. Process the document
await chunkDocument({ documentId: "ml_intro" });
await embedChunks({ documentId: "ml_intro" });

// 3. Extract and create entities
const terms = await extractTerms({ documentId: "ml_intro" });
await createEntities({
  entities: [
    {
      name: "Machine Learning",
      entityType: "CONCEPT",
      observations: ["Subset of artificial intelligence", "Learns from data"]
    }
  ]
});

// 4. Search with hybrid approach
const results = await hybridSearch({
  query: "artificial intelligence applications",
  limit: 10,
  useGraph: true
});

System Prompt Suggestions

For optimal memory utilization, consider using this system prompt:

You have access to a RAG-enabled memory system with knowledge graph capabilities. Follow these guidelines:

1. **Information Storage**:
   - Store important documents using the document management tools
   - Create entities for people, concepts, organizations, and technologies
   - Build relationships between related concepts

2. **Information Retrieval**:
   - Use hybrid search for comprehensive information retrieval
   - Leverage both semantic similarity and graph relationships
   - Search entities before creating duplicates

3. **Memory Maintenance**:
   - Add observations to enrich entity context
   - Link documents to relevant entities for better discoverability
   - Use statistics to monitor knowledge base growth

4. **Processing Workflow**:
   - Store → Chunk → Embed → Extract → Link
   - Always process documents completely for best search results

Contributing

Contributions are welcome! Please follow standard development practices and ensure all tests pass before submitting pull requests.

License

This project is licensed under the MIT License. See the LICENSE file for details.


Built with: TypeScript, SQLite, sqlite-vec, Hugging Face Transformers, Model Context Protocol SDK

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选