RAGFlow MCP
一个简单的临时 MCP 服务器,用于 RAGFlow,在官方版本发布之前弥补空缺。
README
ragflow-mcp
简单的 RAGFlow MCP。 仅在 RAGFlow 团队发布官方 MCP 服务器之前有用
安装
我们提供两种安装方法。 推荐使用方法 2(使用 uv),因为它安装速度更快,并且依赖管理更好。
方法 1:使用 conda
- 创建一个新的 conda 环境:
conda create -n ragflow_mcp python=3.12
conda activate ragflow_mcp
- 克隆存储库:
git clone https://github.com/oraichain/ragflow-mcp.git
cd ragflow-mcp
- 安装依赖项:
pip install -r requirements.txt
方法 2:使用 uv(推荐)
- 安装 uv(一个快速的 Python 包安装程序和解析器):
curl -LsSf https://astral.sh/uv/install.sh | sh
- 克隆存储库:
git clone https://github.com/oraichain/ragflow-mcp.git
cd ragflow-mcp
- 创建一个新的虚拟环境并激活它:
uv venv --python 3.12
source .venv/bin/activate # 在 Unix/macOS 上
# 或者在 Windows 上:
# .venv\Scripts\activate
- 安装依赖项:
uv pip install -r pyproject.toml
运行 MCP 服务器检查器进行调试
-
启动 MCP 服务器
-
使用以下命令启动检查器:
# 你可以选择不同的服务器
SERVER_PORT=9000 npx @modelcontextprotocol/inspector
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。