RAGFlow MCP Server

RAGFlow MCP Server

Provides a comprehensive Model Context Protocol interface for RAGFlow, enabling AI models to perform semantic retrieval, manage datasets, and handle document chunks. It supports advanced features like GraphRAG and RAPTOR for sophisticated knowledge base management and natural language querying.

Category
访问服务器

README

RAGFlow MCP Server

A comprehensive Model Context Protocol (MCP) server for RAGFlow that provides full API access for semantic retrieval and knowledge base management.

Features

  • Semantic Retrieval: Search across datasets using natural language queries
  • Dataset Management: Create, list, update, and delete datasets
  • Document Management: Upload, parse, list, download, and delete documents
  • Chunk Management: Add, list, update, and delete document chunks
  • Chat Assistants: Create and manage chat assistants with RAG capabilities
  • Session Management: Create and manage chat sessions
  • GraphRAG & RAPTOR: Build and query knowledge graphs (when supported by your RAGFlow instance)

Installation

Prerequisites

  • Python 3.10+
  • RAGFlow server running and accessible (v0.16.0+ for core features)
  • RAGFlow API key

Note: GraphRAG and RAPTOR build APIs require RAGFlow v0.21.0 or later.

Install from source

git clone https://github.com/Juxsta/ragflow-mcp.git
cd ragflow-mcp
pip install -e .

Configure Claude Code

Add to your Claude Code MCP settings:

claude mcp add ragflow -e RAGFLOW_API_KEY=your-api-key -e RAGFLOW_URL=http://localhost:9380/api/v1 -- python -m ragflow_mcp.server

Or manually add to ~/.claude/settings.json:

{
  "mcpServers": {
    "ragflow": {
      "command": "python",
      "args": ["-m", "src.server"],
      "cwd": "/path/to/ragflow-mcp",
      "env": {
        "RAGFLOW_API_KEY": "your-api-key",
        "RAGFLOW_URL": "http://localhost:9380/api/v1"
      }
    }
  }
}

Environment Variables

Variable Required Default Description
RAGFLOW_API_KEY Yes - Your RAGFlow API key
RAGFLOW_URL No http://localhost:9380/api/v1 RAGFlow API base URL
RAGFLOW_TIMEOUT No 300 Request timeout in seconds
RAGFLOW_LOG_LEVEL No INFO Logging level

Available Tools

Retrieval

  • ragflow_retrieval_tool - Semantic search across datasets

Dataset Management

  • ragflow_list_datasets_tool - List all datasets
  • ragflow_create_dataset_tool - Create a new dataset
  • ragflow_update_dataset_tool - Update dataset configuration
  • ragflow_delete_dataset_tool - Delete a dataset (requires confirmation)

Document Management

  • ragflow_list_documents_tool - List documents in a dataset
  • ragflow_upload_document_tool - Upload a document (file path or base64)
  • ragflow_parse_document_tool - Trigger async document parsing
  • ragflow_parse_document_sync_tool - Parse and wait for completion
  • ragflow_download_document_tool - Download document content
  • ragflow_delete_document_tool - Delete a document (requires confirmation)
  • ragflow_stop_parsing_tool - Cancel an active parsing job

Chunk Management

  • ragflow_list_chunks_tool - List chunks in a document
  • ragflow_add_chunk_tool - Add a chunk to a document
  • ragflow_update_chunk_tool - Update chunk content/keywords
  • ragflow_delete_chunk_tool - Delete chunks (requires confirmation)

Chat & Sessions

  • ragflow_list_chats_tool - List chat assistants
  • ragflow_create_chat_tool - Create a chat assistant
  • ragflow_update_chat_tool - Update chat configuration
  • ragflow_delete_chat_tool - Delete a chat assistant (requires confirmation)
  • ragflow_list_sessions_tool - List sessions for a chat
  • ragflow_create_session_tool - Create a new session
  • ragflow_chat_tool - Send a message and get a response

GraphRAG & RAPTOR

  • ragflow_build_graph_tool - Build knowledge graph for a dataset
  • ragflow_graph_status_tool - Check graph construction status
  • ragflow_get_graph_tool - Retrieve the knowledge graph
  • ragflow_delete_graph_tool - Delete a knowledge graph (requires confirmation)
  • ragflow_build_raptor_tool - Build RAPTOR tree for a dataset
  • ragflow_raptor_status_tool - Check RAPTOR construction status

Usage Examples

Semantic Search

Query: "What is the main character's motivation?"
Dataset: your-dataset-id

Upload and Parse a Document

1. Upload: ragflow_upload_document_tool(dataset_id, file_path="/path/to/doc.pdf")
2. Parse: ragflow_parse_document_sync_tool(document_id)
3. Search: ragflow_retrieval_tool(query="your question", dataset_ids=[dataset_id])

Development

Run Tests

pip install -e ".[dev]"
pytest tests/ -v

Project Structure

ragflow-mcp/
├── src/
│   ├── __init__.py
│   ├── server.py          # FastMCP server setup
│   ├── connector.py       # RAGFlow API client
│   ├── config.py          # Configuration management
│   ├── cache.py           # LRU cache implementation
│   └── tools/
│       ├── retrieval.py   # Semantic search
│       ├── datasets.py    # Dataset CRUD
│       ├── documents.py   # Document management
│       ├── chunks.py      # Chunk management
│       ├── chat.py        # Chat & sessions
│       └── graph.py       # GraphRAG & RAPTOR
├── tests/
│   └── ...
├── pyproject.toml
└── README.md

Safety Features

All delete operations require explicit confirm=True parameter to prevent accidental data loss.

License

MIT License

Acknowledgments

  • RAGFlow - The RAG engine this MCP server integrates with
  • FastMCP - The MCP framework used for building this server

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选