RanchHand
Enables interaction with OpenAI-compatible APIs (like Ollama) through MCP tools. Provides access to chat completions, model listings, and embeddings generation from local or remote OpenAI-style endpoints.
README
RanchHand — OpenAI-compatible MCP Server (Architecture)
RanchHand is a minimal MCP server that fronts an OpenAI-style API. It works great with Ollama's OpenAI-compatible endpoints (http://localhost:11434/v1) and should work with other OpenAI-compatible backends.
Features
- Tools:
openai_models_list→ GET/v1/modelsopenai_chat_completions→ POST/v1/chat/completionsopenai_embeddings_create→ POST/v1/embeddings- Optional HTTP ingest on localhost:41414 (bind 127.0.0.1):
POST /ingest/slack(index: chunk + embed + upsert in in-memory store)POST /query(kNN query with embeddings)GET /profiles|POST /profiles(role defaults: embed, summarizers, reranker, chunking)POST /answer(retrieve + generate answer with bracketed citations)
- Config via env:
OAI_BASE(defaulthttp://localhost:11434/v1)OAI_API_KEY(optional; some backends ignore it, Ollama allows any value)OAI_DEFAULT_MODEL(fallback model name, e.g.llama3:latest)OAI_TIMEOUT_MS(optional request timeout)
Development
Linting
This project uses ESLint to maintain code quality and consistency.
# Run the linter to check for issues
npm run lint
# Automatically fix linting issues where possible
npm run lint:fix
The linting rules enforce:
- Consistent code style (single quotes, semicolons, 2-space indentation)
- Error prevention (no unused variables, no undefined variables)
- Modern JavaScript practices (const/let instead of var, arrow functions)
CI will automatically run linting checks on all pull requests.
Testing
This repo uses Vitest for unit tests. External network calls are mocked, so tests run deterministically without Ollama or internet access.
Commands:
# Run tests once
npm test
# TDD: watch mode
npm run test:watch
# With coverage report
npm run test:coverage
Coverage thresholds are configured in vitest.config.mjs (initial targets):
- Lines/Statements ≥ 60%
- Functions ≥ 55%
- Branches ≥ 50%
These thresholds indicate the minimum proportion of code exercised by tests. They are a guardrail, not a guarantee of correctness. We can raise them as the test suite grows.
Notes:
- Tests live in tests/**/*.test.js
- Use vi.spyOn/vi.mock to stub fetch and other external calls
- For CI stability, avoid real network calls in tests
Run (standalone)
# Example with Ollama running locally
export OAI_BASE=http://localhost:11434/v1
export OAI_DEFAULT_MODEL=llama3:latest
node server.mjs
HTTP Ingest Service
node http.mjs
# Binds to 127.0.0.1:41414
# Shared secret is created at ~/.threadweaverinc/auth/shared_secret.txt on first run
Example request:
SECRET=$(cat ~/.threadweaverinc/auth/shared_secret.txt)
curl -s -X POST http://127.0.0.1:41414/ingest/slack \
-H "Content-Type: application/json" \
-H "X-Ranchhand-Token: $SECRET" \
-d '{
"namespace":"slack:T123:C456",
"channel":{"teamId":"T123","channelId":"C456"},
"items":[{"ts":"1234.5678","text":"Hello world","userName":"Dan"}]
}'
Query:
SECRET=$(cat ~/.threadweaverinc/auth/shared_secret.txt)
curl -s -X POST http://127.0.0.1:41414/query \
-H "Content-Type: application/json" \
-H "X-Ranchhand-Token: $SECRET" \
-d '{
"namespace":"slack:T123:C456",
"query":"hello",
"topK": 5,
"withText": true
}'
Answer with citations:
SECRET=$(cat ~/.threadweaverinc/auth/shared_secret.txt)
curl -s -X POST http://127.0.0.1:41414/answer \
-H "Content-Type: application/json" \
-H "X-Ranchhand-Token: $SECRET" \
-d '{
"namespace":"slack:T123:C456",
"query":"What did Dan say about hello?",
"topK": 3
}'
Profiles:
curl -s http://127.0.0.1:41414/profiles
curl -s -X POST http://127.0.0.1:41414/profiles \
-H "Content-Type: application/json" \
-d '{ "embed": { "model": "nomic-embed-text:latest" }, "chunking": { "chunk_tokens": 512 } }'
MCP Tools
openai_models_list- Input:
{} - Output: OpenAI-shaped
{ data: [{ id, object, ... }] }
- Input:
openai_chat_completions- Input:
{ model?: string, messages: [{ role: 'user'|'system'|'assistant', content: string }], temperature?, top_p?, max_tokens? } - Output: OpenAI-shaped chat completion response (single-shot; streaming TBD)
- Input:
openai_embeddings_create- Input:
{ model?: string, input: string | string[] } - Output: OpenAI-shaped embeddings response
- Input:
Claude/Codex (MCP)
Point your MCP config to:
{
"mcpServers": {
"ranchhand": {
"command": "node",
"args": ["/absolute/path/to/server.mjs"],
"env": { "OAI_BASE": "http://localhost:11434/v1", "OAI_DEFAULT_MODEL": "llama3:latest" }
}
}
}
Notes
- Streaming chat completions are not implemented yet (single response per call). If your backend requires streaming, we can add an incremental content pattern that MCP clients can consume.
- RanchHand passes through OpenAI-style payloads and shapes outputs to be OpenAI-compatible, but exact metadata (usage, token counts) depends on the backend.
- HTTP ingest is currently an acknowledgment stub (counts + sample). Chunking/embedding/upsert will be wired next; design is pluggable for local store or Qdrant.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。