ReadPDFx - OCR PDF MCP Server
Provides intelligent OCR and PDF processing capabilities that automatically detect whether PDFs contain digital text or scanned images and apply appropriate extraction methods. Supports text extraction, OCR processing, structure analysis, and batch operations.
README
ReadPDFx - OCR PDF MCP Server
Official MCP SDK STDIO Server - MCP Protocol 2025-06-18 Compliant
<div align="left" style="display: flex; align-items: center; gap: 20px;"> <img src="./logo.png" alt="Read_PDF Logo" width="100" style="flex-shrink: 0;"> <div> ReadPDFx is a comprehensive MCP (Model Context Protocol) server that provides intelligent OCR and PDF processing capabilities using the official MCP SDK with STDIO transport. It automatically detects whether a PDF contains digital text or scanned images and applies the appropriate processing method. </div> </div>
⚡ Quick Start (STDIO Server)
1. Install Dependencies
pip install -r requirements.txt
2. Validate Installation
# Test imports and tools
python validate_tools.py
3. Client Integration
The server runs via STDIO protocol - configure your MCP client:
Claude Desktop:
{
"mcpServers": {
"ocr-pdf": {
"command": "python",
"args": ["d:/AI/MCP/python/ocr_pdf_mcp/mcp_server_stdio.py"],
"env": {}
}
}
}
🚀 Features
- 🎯 Official MCP SDK: Built with official FastMCP framework
- 📡 STDIO Transport: Standard MCP protocol over STDIO
- 🧠 Smart PDF Processing: Automatically detects digital vs scanned content
- 🔧 5 OCR Tools: Text extraction, OCR processing, combined operations
- 🌐 Universal Client Support: Claude Desktop, LM Studio, Continue.dev, Cursor
- ⚡ Lightweight: ~200 lines vs 800+ in HTTP implementation
- 🛡️ Production Ready: Comprehensive error handling and logging
- 📋 Auto Tool Registration: Decorators handle tool discovery
🔧 Installation
Prerequisites
- Python 3.8+
- Tesseract OCR
Windows
# Install Python dependencies
pip install -r requirements.txt
# Install Tesseract
choco install tesseract
macOS
pip install -r requirements.txt
brew install tesseract
Linux
pip install -r requirements.txt
sudo apt-get install tesseract-ocr
📋 Available Tools
1. Smart PDF Processing
Intelligent processing with automatic OCR detection:
{
"name": "process_pdf_smart",
"arguments": {
"pdf_path": "/path/to/document.pdf",
"language": "eng"
}
}
2. PDF Text Extraction
Direct text extraction from digital PDFs:
{
"name": "extract_pdf_text",
"arguments": {
"pdf_path": "/path/to/document.pdf",
"page_range": "1-5"
}
}
3. OCR Processing
OCR on image files:
{
"name": "perform_ocr",
"arguments": {
"image_path": "/path/to/image.png",
"language": "eng"
}
}
4. PDF Structure Analysis
Analyze document structure and metadata:
{
"name": "analyze_pdf_structure",
"arguments": {
"pdf_path": "/path/to/document.pdf"
}
}
5. Batch Processing
Process multiple files:
{
"name": "batch_process_pdfs",
"arguments": {
"input_directory": "/path/to/pdfs/",
"output_directory": "/path/to/output/",
"file_pattern": "*.pdf"
}
}
🔌 Client Integration
Claude Desktop
Add to claude_desktop_config.json:
{
"mcpServers": {
"readpdfx": {
"command": "python",
"args": ["path/to/readpdfx/run.py"],
"env": {
"PYTHONPATH": "path/to/readpdfx"
}
}
}
}
LM Studio
Configure MCP server with:
- Command:
python - Args:
path/to/readpdfx/run.py - URL:
http://localhost:8000(HTTP mode)
Continue.dev
Add to config.json:
{
"contextProviders": [
{
"name": "mcp",
"params": {
"command": "python",
"args": ["path/to/readpdfx/run.py"]
}
}
]
}
Cursor
Configure in settings.json:
{
"mcp.servers": {
"readpdfx": {
"command": "python",
"args": ["path/to/readpdfx/run.py"]
}
}
}
📁 See client-configs/ for detailed integration guides.
🌐 API Endpoints
MCP Protocol Endpoints
POST /mcp/initialize- Initialize MCP sessionPOST /mcp/tools/list- List available toolsPOST /mcp/tools/call- Call MCP toolsGET /mcp/manifest- Get MCP manifest
HTTP Endpoints
GET /health- Health checkPOST /jsonrpc- JSON-RPC 2.0 endpointGET /docs- API documentationGET /tools- Tools discovery
🔧 Configuration
Environment Variables
MCP_SERVER_HOST=localhost # Server host
MCP_SERVER_PORT=8000 # Server port
TESSERACT_CMD=/usr/bin/tesseract # Tesseract path
PYTHONPATH=. # Python path
Config Files
mcp.json- MCP Protocol configurationmcp-config.yaml- YAML configurationpyproject.toml- Python project configpackage.json- Node.js compatibility
🐳 Docker & Kubernetes
Docker Deployment
Quick Start with Docker
# Build and run with Docker
docker build -t ocr-pdf-mcp .
docker run -p 8000:8000 -v ./pdf-test:/app/pdf-test:ro ocr-pdf-mcp
# Or use Docker Compose
docker-compose up -d
Automated Docker Deployment
# Linux/macOS
./scripts/docker-deploy.sh run
# Windows
scripts\docker-deploy.bat run
Available Docker commands:
build- Build Docker image onlyrun- Build and run container (default)start- Start container (assumes image exists)stop- Stop running containerlogs- Show container logsclean- Stop container and remove imagestatus- Show container status
Kubernetes Deployment
Deploy to Kubernetes
# Quick deployment
./scripts/k8s-deploy.sh deploy
# Manual deployment
kubectl apply -f k8s/ -n ocr-pdf-mcp
Kubernetes Resources
- Deployment:
k8s/deployment.yaml- Main application deployment - Service:
k8s/deployment.yaml- Service exposure - Ingress:
k8s/ingress.yaml- External access - ConfigMap:
k8s/configmap.yaml- Configuration management - HPA:
k8s/hpa.yaml- Horizontal Pod Autoscaler
Kubernetes Commands
# Scale deployment
kubectl scale deployment ocr-pdf-mcp --replicas=5 -n ocr-pdf-mcp
# Port forward for local access
kubectl port-forward svc/ocr-pdf-mcp-service 8000:80 -n ocr-pdf-mcp
# View logs
kubectl logs -f deployment/ocr-pdf-mcp -n ocr-pdf-mcp
# Check status
kubectl get pods,svc,ingress -n ocr-pdf-mcp
Production Considerations
Multi-stage Build
Use Dockerfile.prod for optimized production builds:
docker build -f Dockerfile.prod -t ocr-pdf-mcp:prod .
Environment Variables
# Docker
docker run -e LOG_LEVEL=INFO -e CORS_ORIGINS="*" ocr-pdf-mcp
# Kubernetes - update ConfigMap
kubectl edit configmap ocr-pdf-mcp-config -n ocr-pdf-mcp
Persistent Storage
# Add to deployment.yaml
volumeMounts:
- name: pdf-storage
mountPath: /app/pdf-test
volumes:
- name: pdf-storage
persistentVolumeClaim:
claimName: pdf-storage-pvc
🧪 Testing
Run Tests
python test_mcp_server.py
Manual Testing
# Health check
curl http://localhost:8000/health
# List tools
curl -X POST http://localhost:8000/mcp/tools/list \
-H "Content-Type: application/json" \
-d '{"jsonrpc": "2.0", "method": "tools/list", "id": 1}'
# Call tool
curl -X POST http://localhost:8000/mcp/tools/call \
-H "Content-Type: application/json" \
-d '{
"jsonrpc": "2.0",
"method": "tools/call",
"params": {
"name": "process_pdf_smart",
"arguments": {"pdf_path": "/path/to/test.pdf"}
},
"id": 1
}'
📊 Performance
- Startup Time: < 2 seconds
- Memory Usage: ~50MB base
- Throughput: 10+ PDFs/minute
- Concurrent Requests: Up to 100
- File Size Limit: 100MB per file
🛠️ Development
Development Mode
python run_server.py --dev --port 8000
Project Structure
readpdfx/
├── run.py # Simple production runner
├── run_server.py # Advanced runner with options
├── mcp_server.py # Core MCP server
├── mcp_tools.py # MCP tools implementation
├── mcp_types.py # MCP Protocol types
├── mcp_server_runner.py # HTTP server runner
├── client-configs/ # Client integration guides
├── backup/ # Legacy files
└── tests/ # Test files
Adding New Tools
- Define tool schema in
mcp_tools.py - Implement tool handler method
- Register tool in
MCPToolsRegistry - Update tests and documentation
🐛 Troubleshooting
Common Issues
Server won't start
# Check port availability
netstat -an | grep 8000
# Try different port
python run_server.py --port 8001
OCR not working
# Check Tesseract installation
tesseract --version
# Install language data
tesseract --list-langs
Permission errors
- Ensure read access to PDF files
- Check write permissions for output directory
- Run with appropriate user privileges
Connection timeout
- Verify server is running:
curl http://localhost:8000/health - Check firewall settings
- Try HTTP instead of direct MCP connection
Debug Mode
python run_server.py --dev
📈 Monitoring
Health Check
curl http://localhost:8000/health
Metrics (Future)
- Request count and latency
- Tool usage statistics
- Error rates and types
- Resource utilization
🤝 Contributing
- Fork the repository
- Create feature branch:
git checkout -b feature/new-tool - Make changes and add tests
- Submit pull request
Development Setup
git clone https://github.com/irev/mcp-readpdfx.git
cd readpdfx
pip install -r requirements-dev.txt
python test_mcp_server.py
📄 License
MIT License - see LICENSE file.
🔗 Links
- Repository: https://github.com/irev/mcp-readpdfx
- Issues: https://github.com/irev/mcp-readpdfx/issues
- Documentation: https://github.com/irev/mcp-readpdfx#readme
- MCP Protocol: Model Context Protocol Specification
🏆 Acknowledgments
- MCP Protocol Team for the specification
- FastAPI for the web framework
- Tesseract OCR for text recognition
- PyPDF2 and pdfplumber for PDF processing
Made with ❤️ for the MCP community
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。