Real Estate MCP Server

Real Estate MCP Server

A comprehensive Model Context Protocol server for real estate data management that provides tools and resources for property listings, agent management, market analysis, client relationships, and area intelligence.

Category
访问服务器

README

Real Estate MCP Server

A comprehensive Model Context Protocol (MCP) server for real estate data management. This server provides tools, resources, and prompts for property listings, agent management, market analysis, client relationships, and area intelligence.

🏗️ Architecture

The server is built with a modular, componentized architecture for maintainability and scalability:

real-estate-mcp/
├── main.py                    # Main server entry point
├── utils.py                   # Core data management utilities
├── tools/                     # MCP Tools (organized by category)
│   ├── property_tools.py      # Property search, filtering, insights
│   ├── agent_tools.py         # Agent profiles, performance, dashboards
│   ├── market_tools.py        # Market analysis and trends
│   ├── client_tools.py        # Client management and matching
│   ├── area_tools.py          # Area intelligence and amenities
│   └── system_tools.py        # Data management and system tools
├── resources/                 # MCP Resources (organized by domain)
│   ├── property_resources.py  # Property-related resources
│   ├── agent_resources.py     # Agent-related resources
│   ├── market_resources.py    # Market analysis resources
│   ├── client_resources.py    # Client management resources
│   └── location_resources.py  # Area and amenity resources
├── prompts/                   # MCP Prompts (user-controlled templates)
│   ├── __init__.py            # Central prompt registration
│   ├── property_prompts.py    # Property analysis and comparison prompts
│   ├── client_prompts.py      # Client matching and consultation prompts
│   ├── market_prompts.py      # Market analysis and investment prompts
│   └── agent_prompts.py       # Agent performance and development prompts
└── data/                      # Real estate data files
    ├── properties/
    ├── agents/
    ├── clients/
    ├── market/
    ├── transactions/
    ├── areas/
    └── amenities/

🚀 Features

MCP Capabilities

  • 30+ Tools: Comprehensive real estate operations
  • 10 Resources: 5 static resources + 5 dynamic resource templates
  • 11 Prompts: User-controlled analysis templates across 4 categories
  • SSE Transport: Web-compatible Server-Sent Events endpoint

Tool Categories

🏠 Property Management (7 tools)

  • Search and filter properties by multiple criteria
  • Get property details and comprehensive insights
  • Area-based and agent-based property listings
  • Market context and comparable analysis

👥 Agent Operations (6 tools)

  • Agent profiles and specializations
  • Performance dashboards and metrics
  • Client and property portfolio management
  • Sales tracking and analytics

📊 Market Analysis (7 tools)

  • Market overview and price analytics
  • Area-specific market performance
  • Investment opportunity analysis
  • Comparative area analysis
  • Transaction tracking

🤝 Client Management (3 tools)

  • Client profiles and preferences
  • Property matching algorithms
  • Budget and criteria-based recommendations

🏘️ Area Intelligence (9 tools)

  • Comprehensive area reports
  • Amenities and demographics
  • Schools, parks, shopping, healthcare data
  • City overview and area comparisons

⚙️ System Management (2 tools)

  • Data refresh and cache management
  • System statistics and summaries

Resources

Static Resources

  • realestate://all-properties: Complete property listings
  • realestate://all-agents: Agent directory
  • realestate://market-overview: Current market trends
  • realestate://all-areas: Area information
  • realestate://amenities: Complete amenities database

Dynamic Resource Templates

  • realestate://properties/area/{area}: Area-specific properties
  • realestate://agent/{agent_id}/dashboard: Agent performance dashboard
  • realestate://market/area/{area}: Area market analysis
  • realestate://property/{property_id}/insights: Property insights
  • realestate://client/{client_id}/matches: Client property matches

Prompts (11 total)

Property Prompts (2 prompts)

  • Property Analysis: Comprehensive property evaluation and insights
  • Property Comparison: Side-by-side property comparison analysis

Client Prompts (3 prompts)

  • Client Matching: Personalized property recommendations
  • Client Consultation: Structured consultation framework
  • Client Feedback Analysis: Search strategy refinement

Market Prompts (3 prompts)

  • Market Reports: Comprehensive area market analysis
  • Investment Analysis: ROI and opportunity assessment
  • Comparative Market Analysis: Multi-area comparison

Agent Prompts (3 prompts)

  • Agent Performance: Performance dashboards and analysis
  • Agent Marketing Strategy: Business development and marketing
  • Agent Training Development: Skill enhancement and training plans

📦 Installation

  1. Clone the repository:

    git clone https://github.com/agentic-ops/real-estate-mcp.git
    cd real-estate-mcp
    
  2. Install dependencies:

    pip install -r requirements.txt
    
  3. Run the server:

    python main.py
    

🔍 MCP Inspector

To inspect and debug your MCP server, you can use the MCP Inspector tool:

npx @modelcontextprotocol/inspector

This will launch the MCP Inspector interface, allowing you to:

  • Monitor MCP messages in real-time
  • Debug tool and resource calls
  • Inspect server responses
  • Test server functionality

🌐 Server Transport

The server uses Server-Sent Events (SSE) transport, making it compatible with:

  • Web browsers and HTTP clients
  • Traditional MCP clients
  • Custom integrations

Connection Details

  • SSE Endpoint: http://127.0.0.1:8000/sse (for establishing SSE connection)
  • Message Endpoint: http://127.0.0.1:8000/messages/ (for posting MCP messages)
  • Transport: SSE (Server-Sent Events)
  • Protocol: MCP (Model Context Protocol)

Web Client Example

// Establish SSE connection
const eventSource = new EventSource('http://127.0.0.1:8000/sse');
eventSource.onmessage = function(event) {
    const mcpMessage = JSON.parse(event.data);
    // Handle MCP protocol messages
};

// Send MCP messages
async function sendMCPMessage(message) {
    const response = await fetch('http://127.0.0.1:8000/messages/', {
        method: 'POST',
        headers: {
            'Content-Type': 'application/json',
        },
        body: JSON.stringify(message)
    });
    return response.json();
}

🔧 Component Details

Core Components

utils.py - Data Management

  • RealEstateDataManager: Central data access class
  • PropertyFilter: Search and filtering utilities
  • JSON data loading and caching
  • Cross-referencing and relationship mapping

main.py - Server Entry Point

  • FastMCP server initialization
  • Component registration orchestration
  • SSE transport configuration
  • Startup logging and diagnostics

Tool Modules

Each tool module follows a consistent pattern:

def register_[category]_tools(mcp: FastMCP):
    """Register all [category] tools with the MCP server"""
    
    @mcp.tool()
    def tool_function(parameters) -> str:
        """Tool description"""
        # Implementation
        return json.dumps(result, indent=2)

Resource Modules

Resources are organized by domain for better maintainability:

Property Resources (property_resources.py)

  • Property listings and search results
  • Property insights and market context
  • Area-based property filtering

Agent Resources (agent_resources.py)

  • Agent profiles and directories
  • Performance dashboards and metrics

Market Resources (market_resources.py)

  • Market overview and trends
  • Area-specific market analysis

Client Resources (client_resources.py)

  • Client preference matching
  • Property recommendations

Location Resources (location_resources.py)

  • Area information and demographics
  • Amenities and local services

Each module follows a consistent pattern:

def register_[domain]_resources(mcp: FastMCP):
    """Register all [domain] resources with the MCP server"""
    
    @mcp.resource("realestate://resource-name")
    def resource_function() -> str:
        """Resource description"""
        return json.dumps(data, indent=2)

Prompt Templates

Prompts guide AI analysis:

@mcp.prompt()
def analysis_prompt(param: str = "default") -> str:
    """Analysis prompt description"""
    return f"""
    Detailed analysis instructions for {param}...
    """

📊 Data Structure

The server operates on comprehensive real estate data:

  • 5 Properties: Victorian homes, contemporary, luxury, townhouses
  • 3 Agents: Specialized real estate professionals
  • 6 Clients: Buyers, sellers, investors with preferences
  • Multiple Sales: Recent transaction history
  • 5 Areas: Downtown Riverside, Woodcrest, Canyon Crest, Arlington Heights, La Sierra
  • Amenities: Schools, parks, shopping, healthcare facilities

🔍 Usage Examples

MCP Client Examples

For proper MCP client integration, use the MCP protocol with the correct endpoints:

# Establish SSE connection (listen for server messages)
curl -N http://127.0.0.1:8000/sse

# Send MCP messages (in a separate terminal)
# Search properties
curl -X POST http://127.0.0.1:8000/messages/ \
  -H "Content-Type: application/json" \
  -d '{"jsonrpc": "2.0", "id": 1, "method": "tools/call", "params": {"name": "search_properties", "arguments": {"query": "Victorian"}}}'

# Filter by criteria
curl -X POST http://127.0.0.1:8000/messages/ \
  -H "Content-Type: application/json" \
  -d '{"jsonrpc": "2.0", "id": 2, "method": "tools/call", "params": {"name": "filter_properties", "arguments": {"min_price": 500000, "max_price": 1000000}}}'

# Get market overview
curl -X POST http://127.0.0.1:8000/messages/ \
  -H "Content-Type: application/json" \
  -d '{"jsonrpc": "2.0", "id": 3, "method": "resources/read", "params": {"uri": "realestate://market-overview"}}'

# Match client preferences
curl -X POST http://127.0.0.1:8000/messages/ \
  -H "Content-Type: application/json" \
  -d '{"jsonrpc": "2.0", "id": 4, "method": "tools/call", "params": {"name": "match_client_preferences", "arguments": {"client_id": "CLI001"}}}'

🧪 Testing

The project includes a comprehensive test suite covering all components and functionality.

Test Structure

tests/
├── conftest.py              # Pytest configuration and shared fixtures
├── unit/                    # Unit tests for core components
│   ├── test_utils.py        # RealEstateDataManager and PropertyFilter tests
│   └── test_*.py            # Additional unit tests
├── integration/             # Integration tests for MCP components
│   ├── test_property_tools.py    # Property tools integration tests
│   ├── test_all_tools.py         # All other tool categories
│   ├── test_resources.py         # Static and template resources tests
│   └── test_prompts.py            # Prompt template tests
└── __init__.py

Test Categories

Unit Tests (tests/unit/)

  • Data Manager Tests: Core functionality of RealEstateDataManager
  • Filter Tests: Property filtering logic and edge cases
  • Utility Functions: Helper functions and data validation

Integration Tests (tests/integration/)

  • Property Tools: Search, filter, insights, and area-based queries
  • Agent Tools: Profile management, performance dashboards
  • Market Tools: Market analysis and trend calculations
  • Client Tools: Client matching and preference algorithms
  • Area Tools: Area intelligence and amenities data
  • System Tools: Data refresh and system statistics
  • Resources: Static resources and dynamic templates
  • Prompts: Template generation and parameter handling (11 prompts across 4 categories)

Running Tests

Prerequisites

# Install testing dependencies
pip install -r requirements.txt

Quick Test Commands

# Run all tests
pytest

# Run with coverage report
pytest --cov=. --cov-report=html

# Run specific test categories
pytest tests/unit/                    # Unit tests only
pytest tests/integration/             # Integration tests only
pytest tests/integration/test_property_tools.py  # Property tools only

Using the Test Runner Script

# Run all tests
python run_tests.py

# Run specific test types
python run_tests.py unit              # Unit tests only
python run_tests.py integration       # Integration tests only
python run_tests.py property          # Property tools only
python run_tests.py resources         # Resource tests only

# Run with verbose output and coverage
python run_tests.py all -v -c

Test Features

Fixtures and Test Data

  • Isolated Test Environment: Each test uses temporary data directories
  • Mock Data: Consistent test data across all test cases
  • Shared Fixtures: Reusable test components in conftest.py
  • Data Manager Mocking: Isolated testing without file system dependencies

Coverage and Reporting

  • Code Coverage: Comprehensive coverage reporting with pytest-cov
  • HTML Reports: Visual coverage reports in htmlcov/index.html
  • Missing Lines: Identification of uncovered code paths
  • Branch Coverage: Logic branch testing

Test Configuration

  • pytest.ini: Centralized test configuration
  • Automatic Discovery: Tests auto-discovered by naming convention
  • Parallel Execution: Support for parallel test execution
  • Filtering: Warning filters for clean test output

Test Data Validation

The test suite validates:

  • ✅ All 30+ tools function correctly with mock and real data
  • ✅ Property filtering logic handles edge cases
  • ✅ Search functionality is case-insensitive and comprehensive
  • ✅ Agent performance calculations are accurate
  • ✅ Market analysis tools process data correctly
  • ✅ Client matching algorithms work as expected
  • ✅ Area intelligence aggregates data properly
  • ✅ Resource endpoints return valid JSON
  • ✅ Prompt templates generate proper instructions
  • ✅ Error handling for missing or invalid data
  • ✅ Data refresh and caching mechanisms
  • ✅ System statistics and summaries

Continuous Integration

For CI/CD pipelines, use:

# Basic test run
pytest tests/ --tb=short

# With coverage for CI reporting
pytest tests/ --cov=. --cov-report=xml --cov-report=term-missing

# Specific test categories for staged testing
pytest tests/unit/ --tb=short          # Fast unit tests first
pytest tests/integration/ --tb=short   # Integration tests second

Writing New Tests

When adding new functionality:

  1. Unit Tests: Add to tests/unit/ for core logic
  2. Integration Tests: Add to appropriate tests/integration/test_*.py
  3. Use Fixtures: Leverage existing fixtures in conftest.py
  4. Mock External Dependencies: Use unittest.mock for isolation
  5. Test Edge Cases: Include boundary conditions and error scenarios
  6. Follow Naming Convention: test_*.py files, Test* classes, test_* methods

🛠️ Development

Adding New Tools

  1. Choose appropriate category in tools/
  2. Add tool function with @mcp.tool() decorator
  3. Register in the category's register_*_tools() function
  4. Import and call registration in main.py
  5. Add Tests: Create corresponding tests in tests/integration/

Adding New Resources

  1. Choose appropriate domain module in resources/ (property, agent, market, client, location)
  2. Add resource function with @mcp.resource() decorator and URI pattern
  3. Register in the domain's register_*_resources() function
  4. Import and call registration in main.py
  5. Add Tests: Include resource tests in tests/integration/test_resources.py

Adding New Prompts

  1. Choose appropriate category in prompts/ (property, client, market, or agent)
  2. Add prompt function with @mcp.prompt() decorator
  3. Include parameter defaults and comprehensive instructions
  4. Register in the category's register_*_prompts() function
  5. Add Tests: Include prompt tests in tests/integration/test_prompts.py

Adding New Prompt Categories

  1. Create new file in prompts/ directory (e.g., prompts/new_category_prompts.py)
  2. Follow the existing pattern with register_new_category_prompts(mcp) function
  3. Import and register in prompts/__init__.py
  4. Add Tests: Create corresponding test fixtures and test methods

🔄 Benefits of SSE Transport

  • Web Compatible: Direct browser integration
  • Real-time: Server-sent events for live updates
  • HTTP Standard: Works with standard HTTP tools
  • Firewall Friendly: Uses standard HTTP port
  • Scalable: Supports multiple concurrent connections

📝 License

This project is licensed under the MIT License.

🤝 Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Add your component following the established patterns
  4. Test thoroughly
  5. Submit a pull request

📖 Further Reading

For a comprehensive deep dive into the architecture, design principles, and real-world applications of this MCP server, read the detailed blog post:

🔌 MCP Servers - Model Context Protocol Implementation

The blog post covers:

  • Understanding MCP Servers and their business impact
  • Architecture deep dive with code examples
  • MCP Tools, Prompts, and Resources explained
  • Real-world usage scenarios and implementation patterns
  • Security considerations and best practices
  • Future implications of MCP technology

Built with the Model Context Protocol (MCP) for seamless AI integration

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选