Record MCP Server

Record MCP Server

Enables storing and managing dynamic review records with custom schemas for any category (coffee, whisky, wine, etc.), supporting both local filesystem and Cloudflare R2 storage with flexible field definitions.

Category
访问服务器

README

Record MCP Server

A Model Context Protocol (MCP) server for storing and managing dynamic review records with user-defined schemas. Perfect for organizing reviews of coffee, whisky, wine, or any other category you can think of!

Features

  • Dynamic Schemas: Create review types with custom fields on-the-fly
  • Flexible Storage: Local filesystem (dev) or Cloudflare R2 (production)
  • Type-Safe: Built with TypeScript and runtime validation
  • Extensible: Add new fields to existing review types
  • Easy Migration: Switch from local to cloud storage with one environment variable

Quick Start

Installation

# Install dependencies
npm install

# Build the project
npm run build

Configuration

Copy the example environment file:

cp .env.example .env

For local development (default):

STORAGE_PROVIDER=local
LOCAL_DATA_PATH=./data

For production with Cloudflare R2:

STORAGE_PROVIDER=r2
R2_ACCOUNT_ID=your_account_id
R2_ACCESS_KEY_ID=your_access_key
R2_SECRET_ACCESS_KEY=your_secret_key
R2_BUCKET_NAME=review-records

Running the Server

Development mode (with auto-reload):

npm run dev

Production mode:

npm run build
npm start

Running Tests

npm test

MCP Tools

The server provides the following MCP tools:

1. list_review_types

List all review types with their schemas and record counts.

Parameters: None

Example Response:

{
  "types": [
    {
      "name": "coffee",
      "schema": [
        { "name": "flavor", "type": "string" },
        { "name": "aroma", "type": "string" },
        { "name": "acidity", "type": "string" }
      ],
      "recordCount": 5,
      "createdAt": "2025-11-16T10:00:00Z",
      "updatedAt": "2025-11-16T12:00:00Z"
    }
  ]
}

2. get_review_type

Get detailed information about a specific review type including all records.

Parameters:

  • typeName (string): Name of the review type

Example:

{
  "typeName": "coffee"
}

3. add_review_type

Create a new review type with a custom schema.

Parameters:

  • name (string): Name of the review type (e.g., "coffee", "whisky")
  • fields (array): Array of field definitions

Supported Field Types:

  • string: Text values
  • number: Numeric values
  • boolean: True/false values
  • date: ISO 8601 date strings

Example:

{
  "name": "coffee",
  "fields": [
    { "name": "flavor", "type": "string" },
    { "name": "aroma", "type": "string" },
    { "name": "acidity", "type": "string" },
    { "name": "rating", "type": "number" }
  ]
}

4. add_field_to_type

Add a new field to an existing review type's schema.

Parameters:

  • typeName (string): Name of the review type
  • fieldName (string): Name of the new field
  • fieldType (string): Type of the field (string, number, boolean, date)

Example:

{
  "typeName": "coffee",
  "fieldName": "body",
  "fieldType": "string"
}

5. add_review_record

Add a new review record to a type.

Parameters:

  • typeName (string): Name of the review type
  • data (object): Review data matching the type's schema

Example:

{
  "typeName": "coffee",
  "data": {
    "flavor": "nutty",
    "aroma": "strong",
    "acidity": "medium",
    "rating": 8.5
  }
}

Usage Examples

Complete Workflow

// 1. Create a new review type
await mcp.callTool("add_review_type", {
  name: "whisky",
  fields: [
    { name: "taste", type: "string" },
    { name: "age", type: "number" },
    { name: "peated", type: "boolean" },
    { name: "tasted_on", type: "date" }
  ]
});

// 2. Add a review
await mcp.callTool("add_review_record", {
  typeName: "whisky",
  data: {
    taste: "smoky and complex",
    age: 12,
    peated: true,
    tasted_on: "2025-11-16T10:00:00Z"
  }
});

// 3. Add more fields later
await mcp.callTool("add_field_to_type", {
  typeName: "whisky",
  fieldName: "region",
  fieldType: "string"
});

// 4. List all types and their data
const result = await mcp.callTool("list_review_types", {});

Architecture

Project Structure

record-mcp/
├── src/
│   ├── index.ts              # MCP server entry point
│   ├── types.ts              # TypeScript type definitions
│   ├── storage/
│   │   ├── interface.ts      # Storage provider interface
│   │   ├── local.ts          # Local file system storage
│   │   ├── r2.ts             # Cloudflare R2 storage
│   │   └── factory.ts        # Storage provider factory
│   ├── tools/
│   │   ├── list-types.ts     # List and get review types
│   │   ├── add-type.ts       # Create new review type
│   │   ├── add-field.ts      # Add field to type
│   │   └── add-record.ts     # Add review record
│   └── utils/
│       └── validation.ts     # Schema and data validation
├── data/                     # Local storage (when using local provider)
│   ├── types/
│   │   ├── coffee.json
│   │   └── whisky.json
│   └── index.json
└── tests/
    ├── storage.test.ts       # Storage provider tests
    └── tools.test.ts         # MCP tools tests

Storage Abstraction

The server uses a storage abstraction layer that allows easy switching between local files and Cloudflare R2:

  • Local Storage (Development): Uses Node.js fs/promises to store JSON files
  • R2 Storage (Production): Uses AWS S3-compatible API to store in Cloudflare R2

Both providers implement the same StorageProvider interface, making migration seamless.

Data Format

Each review type is stored as a separate JSON file:

{
  "name": "coffee",
  "schema": [
    { "name": "flavor", "type": "string" },
    { "name": "aroma", "type": "string" }
  ],
  "records": [
    {
      "id": "1234567890-abc123",
      "data": {
        "flavor": "nutty",
        "aroma": "strong"
      },
      "createdAt": "2025-11-16T10:00:00Z"
    }
  ],
  "createdAt": "2025-11-15T09:00:00Z",
  "updatedAt": "2025-11-16T10:00:00Z"
}

Migration from Local to R2

When you're ready to move to production:

  1. Set up your Cloudflare R2 bucket
  2. Update your .env file with R2 credentials
  3. Change STORAGE_PROVIDER=r2
  4. Restart the server

Optional: Use a migration script to copy existing data:

// Copy all local files to R2
const localStorage = new LocalStorageProvider('./data');
const r2Storage = new R2StorageProvider(r2Config);

const types = await localStorage.listTypes();
for (const typeName of types) {
  const data = await localStorage.readType(typeName);
  await r2Storage.writeType(typeName, data);
}

Validation

The server provides comprehensive validation:

  • Type Names: Alphanumeric, hyphens, and underscores only
  • Field Types: Must be one of: string, number, boolean, date
  • Required Fields: All schema fields must be present in records
  • Extra Fields: Records cannot have fields not in the schema
  • Type Checking: Field values must match their declared types

Error Handling

All tools return structured error messages:

{
  "error": "Review type \"coffee\" already exists"
}

Common errors:

  • Duplicate type names
  • Duplicate field names
  • Missing required fields in records
  • Type mismatches
  • Invalid type/field names

Development

Building

npm run build

Watching for Changes

npm run watch

Testing

Run all tests:

npm test

Run specific test file:

tsx tests/storage.test.ts
tsx tests/tools.test.ts

License

MIT

Contributing

Contributions welcome! Please ensure tests pass before submitting PRs.

Support

For issues or questions, please open a GitHub issue.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选