Recursive Companion MCP

Recursive Companion MCP

An MCP server that implements iterative refinement of responses through self-critique cycles, breaking the process into discrete steps to avoid timeouts and show progress.

Category
访问服务器

README

Recursive Companion MCP

An MCP (Model Context Protocol) server that implements iterative refinement through self-critique cycles. Inspired by Hank Besser's recursive-companion, this implementation adds incremental processing to avoid timeouts and enable progress visibility.

Features

  • Incremental Refinement: Avoids timeouts by breaking refinement into discrete steps
  • Mathematical Convergence: Uses cosine similarity to measure when refinement is complete
  • Domain-Specific Optimization: Auto-detects and optimizes for technical, marketing, strategy, legal, and financial domains
  • Progress Visibility: Each step returns immediately, allowing UI updates
  • Parallel Sessions: Support for multiple concurrent refinement sessions

How It Works

The refinement process follows a Draft → Critique → Revise → Converge pattern:

  1. Draft: Generate initial response
  2. Critique: Create multiple parallel critiques (using faster models)
  3. Revise: Synthesize critiques into improved version
  4. Converge: Measure similarity and repeat until threshold reached

Installation

Prerequisites

  • Python 3.10+
  • uv package manager
  • AWS Account with Bedrock access
  • Claude Desktop app

Setup

  1. Clone the repository:
git clone https://github.com/yourusername/recursive-companion-mcp.git
cd recursive-companion-mcp
  1. Install dependencies:
uv sync
  1. Configure AWS credentials as environment variables or through AWS CLI

  2. Add to Claude Desktop config (~/Library/Application Support/Claude/claude_desktop_config.json):

{
  "mcpServers": {
    "recursive-companion": {
      "command": "/path/to/recursive-companion-mcp/run_server.sh",
      "env": {
        "AWS_REGION": "us-east-1",
        "AWS_ACCESS_KEY_ID": "your-key",
        "AWS_SECRET_ACCESS_KEY": "your-secret",
        "BEDROCK_MODEL_ID": "anthropic.claude-3-sonnet-20240229-v1:0",
        "CRITIQUE_MODEL_ID": "anthropic.claude-3-haiku-20240307-v1:0",
        "CONVERGENCE_THRESHOLD": "0.95",
        "PARALLEL_CRITIQUES": "2",
        "MAX_ITERATIONS": "5",
        "REQUEST_TIMEOUT": "600"
      }
    }
  }
}

Usage

The tool provides several MCP endpoints:

Start a refinement session

Use start_refinement to refine: "Explain the key principles of secure API design"

Continue refinement step by step

Use continue_refinement with session_id "abc123..."

Get final result

Use get_final_result with session_id "abc123..."

Other tools

  • get_refinement_status - Check progress without advancing
  • list_refinement_sessions - See all active sessions

Configuration

Environment Variable Default Description
BEDROCK_MODEL_ID anthropic.claude-3-sonnet-20240229-v1:0 Main generation model
CRITIQUE_MODEL_ID Same as BEDROCK_MODEL_ID Model for critiques (use Haiku for speed)
CONVERGENCE_THRESHOLD 0.98 Similarity threshold for convergence (0.90-0.99)
PARALLEL_CRITIQUES 3 Number of parallel critiques per iteration
MAX_ITERATIONS 10 Maximum refinement iterations
REQUEST_TIMEOUT 300 Timeout in seconds

Performance

With optimized settings:

  • Each iteration: 60-90 seconds
  • Typical convergence: 2-3 iterations
  • Total time: 2-4 minutes (distributed across multiple calls)

Using Haiku for critiques reduces iteration time by ~50%.

Architecture

┌─────────────┐     ┌──────────────┐     ┌─────────────┐
│   Claude    │────▶│  MCP Server  │────▶│   Bedrock   │
│  Desktop    │◀────│              │◀────│   Claude    │
└─────────────┘     └──────────────┘     └─────────────┘
                           │
                           ▼
                    ┌──────────────┐
                    │   Session    │
                    │   Manager    │
                    └──────────────┘

Development

Running tests

uv run pytest tests/

Local testing

uv run python test_incremental.py

Attribution

This project is inspired by recursive-companion by Hank Besser. The original implementation provided the conceptual Draft → Critique → Revise → Converge pattern. This MCP version adds:

  • Session-based incremental processing to avoid timeouts
  • AWS Bedrock integration for Claude and Titan embeddings
  • Domain auto-detection and specialized prompts
  • Mathematical convergence measurement
  • Support for different models for critiques vs generation

Contributing

Contributions are welcome! Please read our Contributing Guide for details.

License

MIT License - see LICENSE file for details.

Acknowledgments

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选