Registry Review MCP Server

Registry Review MCP Server

Automates carbon credit project registration document review, transforming 6-8 hour manual reviews into 60-90 minute guided workflows with automated document discovery, evidence extraction, cross-validation, and compliance report generation.

Category
访问服务器

README

Registry Review MCP Server

MCP server that automates carbon credit project registration reviews through an eight-stage workflow.

Overview

The Registry Review MCP Server transforms a 6-8 hour manual document review into a guided workflow where AI handles document organization, data extraction, and consistency checking while humans provide expertise, judgment, and final approval.

Core Capabilities:

  • Document discovery and intelligent classification
  • Requirement mapping with semantic matching
  • Evidence extraction with page citations
  • Cross-document validation (dates, land tenure, project IDs)
  • Structured report generation (Markdown + JSON)

Quick Start

# Install dependencies
uv sync

# Run the MCP server
uv run python -m registry_review_mcp.server

# Run tests (expensive tests excluded by default)
uv run pytest

Claude Desktop Integration

Add to your claude_desktop_config.json:

{
  "mcpServers": {
    "registry-review": {
      "command": "uv",
      "args": [
        "--directory", "/path/to/regen-registry-review-mcp",
        "run", "python", "-m", "registry_review_mcp.server"
      ]
    }
  }
}

The Eight-Stage Workflow

Each stage produces artifacts for human verification before proceeding. The workflow follows a collaboration model where AI handles tedious document processing while humans provide expertise and final judgment.

Stage A: Initialize

Create a review session with project metadata and load the checklist template.

/A-initialize Botany Farm 2022-2023, /path/to/documents

Output: Session ID, project metadata, loaded checklist (23 requirements for Soil Carbon v1.2.2)

Stage B: Document Discovery

Scan the documents directory, extract file metadata, and classify each document by type.

/B-document-discovery

Agent Actions:

  • Recursively scan for PDFs, shapefiles, GeoJSON, spreadsheets
  • Classify documents (project plan, baseline report, monitoring report, land tenure, etc.)
  • Generate document inventory with confidence scores

Human Actions: Review classifications, mark documents as in-scope/ignored/pinned

Output: Document inventory with normalized names, types, and source references

Stage C: Requirement Mapping

Connect discovered documents to specific checklist requirements using semantic matching.

/C-requirement-mapping

Agent Actions:

  • Parse checklist into structured requirements with expected evidence types
  • Analyze documents and suggest requirement → document mappings
  • Flag requirements with no plausible matches

Human Actions: Confirm/reject suggested mappings, manually add missing mappings

Output: Mapping matrix linking each requirement to 0+ documents with confidence scores

Stage D: Evidence Extraction

Extract key data points and text snippets from mapped documents.

/D-evidence-extraction

Agent Actions:

  • Parse document content (PDF text, tables, metadata)
  • Extract 0-3 evidence snippets per requirement with page citations
  • Extract structured data: dates, locations, ownership info, numerical values

Human Actions: Review snippets, delete irrelevant ones, add manual notes

Output: Evidence database with snippets, citations, and structured data points

Stage E: Cross-Validation

Verify consistency, completeness, and compliance across all extracted evidence.

/E-cross-validation

Validation Checks:

  • Date Alignment: Sampling dates within ±120 days of imagery dates
  • Land Tenure: Owner names consistent across documents (fuzzy matching)
  • Project ID: Consistent project identifiers across all documents
  • Completeness: Each requirement has mapped documents with sufficient evidence

Output: Validation results with pass/warning/fail flags and coverage statistics

Stage F: Report Generation

Produce structured, auditable Registry Review Report.

/F-report-generation

Output Formats:

  • Markdown: Human-readable report with executive summary, per-requirement findings, citations
  • JSON: Machine-readable for audit trails and downstream systems

Report Contents: Project metadata, coverage statistics, requirement findings with evidence snippets, validation results, items requiring human review

Stage G: Human Review

Expert validation, annotation, and revision handling.

/G-human-review

Human Actions:

  • Review flagged items requiring judgment
  • Override agent assessments where expert knowledge differs
  • Request revisions from proponent if gaps identified
  • Make final determination: Approve / Conditional / Reject / On Hold

Output: Finalized report with human annotations and approval decision

Stage H: Completion

Finalize and archive the review.

/H-completion

Agent Actions:

  • Lock finalized report
  • Generate archive package with audit trail
  • Prepare data for on-chain registration (if approved)

Output: Locked report, complete audit trail, archived session

Quick Example

/A-initialize Botany Farm 2022-2023, /home/user/projects/botany-farm
/B-document-discovery
/C-requirement-mapping
/D-evidence-extraction
/E-cross-validation
/F-report-generation

Each stage auto-selects the most recent session, so you can run them in sequence without specifying session IDs.

Available Tools

Session Management:

  • create_session - Create new review session
  • load_session / list_sessions / delete_session - Session lifecycle
  • start_review - Quick-start: create session + discover documents
  • list_example_projects - List available test projects

File Upload:

  • create_session_from_uploads - Create session from uploaded files
  • upload_additional_files - Add files to existing session
  • start_review_from_uploads - Full workflow from uploads

Document Processing:

  • discover_documents - Scan and classify project documents
  • add_documents - Add document sources to session
  • extract_pdf_text - Extract text from PDFs
  • extract_gis_metadata - Extract GIS shapefile metadata

Requirement Mapping:

  • map_all_requirements - Semantic mapping to documents
  • confirm_mapping / remove_mapping - Manual mapping adjustments
  • get_mapping_status - View mapping statistics

Evidence & Validation:

  • extract_evidence - Extract evidence for all requirements
  • map_requirement - Map and extract for single requirement

Configuration

Copy .env.example to .env and configure:

# Required for LLM-powered extraction
REGISTRY_REVIEW_ANTHROPIC_API_KEY=sk-ant-api03-...
REGISTRY_REVIEW_LLM_EXTRACTION_ENABLED=true

# Optional
REGISTRY_REVIEW_LLM_MODEL=claude-sonnet-4-5-20250929
REGISTRY_REVIEW_LOG_LEVEL=INFO

See .env.example for all configuration options including chunking, image processing, cost management, and validation settings.

Project Structure

regen-registry-review-mcp/
├── src/registry_review_mcp/
│   ├── server.py           # MCP entry point
│   ├── config/             # Settings management
│   ├── extractors/         # PDF and LLM extraction
│   ├── models/             # Pydantic models
│   ├── prompts/            # A-H workflow prompts
│   ├── services/           # Document processing
│   ├── tools/              # MCP tool implementations
│   └── utils/              # State, cache, helpers
├── data/
│   ├── checklists/         # Methodology requirements (JSON)
│   ├── sessions/           # Active sessions (gitignored)
│   └── cache/              # Cached extractions (gitignored)
├── tests/                  # Test suite
├── docs/
│   └── specs/              # Workflow specifications
└── examples/               # Test data (Botany Farm)

Development

# Run tests (fast tests only - expensive tests excluded)
uv run pytest

# Format and lint
uv run black src/ tests/
uv run ruff check src/ tests/

Test Markers:

  • smoke - Critical path tests (<1s)
  • expensive - Tests with API costs (excluded by default)
  • marker - PDF extraction tests (slow, 8GB+ RAM)
  • accuracy - Ground truth validation tests

See pytest.ini for marker configuration.

Requirements

  • Python >= 3.10
  • uv package manager
  • 4GB RAM minimum (8GB recommended for large PDFs)

License

Copyright 2025 Regen Network Development, Inc.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选